نوع مقاله : مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I
نویسندگان
1 دانشجوی دکتری فیزیولوژی ورزشی، گروه تربیت بدنی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران
2 استادیار فیزیولوژی ورزشی، گروه تربیت بدنی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران
3 . استاد فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
4 . استادیار بیوشیمی، دانشگاه علوم پزشکی کردستان، سنندج، ایران
چکیده
فعالیتهای مقاومتی موجب افزایش فشار اکسیداتیو و آسیب عضلانی میشود. هدف تحقیق حاضر بررسی تأثیر ویتامین D طی 8 هفته تمرینات مقاومتی فزاینده بر تغییرات غلظت مالون دی آلدئید و کراتین کیناز بود. به این منظور 40 آزمودنی مرد 25-20 ساله داوطلبانه در تحقیق حاضر شرکت کردند و بهطور تصادفی در چهار گروه مکمل ویتامینD-تمرین مقاومتی (10n=)، دارونما-تمرین مقاومتی (10n=)، مکمل ویتامینD (10n=) و کنترل (10n=) قرار داده شدند. تمرینات مقاومتی فزاینده سه جلسه در هفته و یک روز در میان به مدت 8 هفته با شدت فزاینده در هشت حرکت انجام گرفت. آزمودنیهای گروه مکمل ویتامین D-تمرین مقاومتی و همچنین گروه مکمل ویتامین D هر دو هفته یکبار یک کپسول 50000 واحدی ویتامین D را تا انتهای دورۀ تحقیق مصرف کردند. نمونهگیری خون پیش و پس از دورۀ تمرینات بهعمل آمد و از پلاسما برای سنجش فعالیت آنزیم کراتین کیناز و تعیین غلظت مالون دیآلدئید استفاده شد. نتایج نشان داد که مقادیر کراتین کیناز بین هیچکدام از گروهها اختلاف معناداری نداشت (05/0˃P). با وجود این مشاهده شد تغییرات مالون دیآلدئید در تعامل گروه × زمان معنادار بود (001/0=P)، بهطوریکه غلظت مالون دیآلدئید در گروه ویتامینD –مقاومتی نسبت به گروه مکمل ویتامین D (017/0=P) و همچنین نسبت به گروه کنترل (034/0=P) بهطور معناداری کاهش یافت. همچنین غلظت مالون دیآلدئید گروه دارونما-مقاومتی نسبت به گروه مکمل ویتامینD بهطور معناداری (045/0=P) در پسآزمون کمتر بود. با وجود این بین دو گروه دارونما- تمرین مقاومتی و مکمل – تمرین مقاومتی تفاوت معناداری مشاهده نشد. در نهایت میتوان گفت ترکیب تمرین مقاومتی و مصرف ویتامین D میتواند موجب کاهش شاخص پراکسیداسیون چربی شود. با وجود این بهنظر میرسد اثر تمرین مقاومتی در این زمینه بسیار کمککننده باشد.
کلیدواژهها
عنوان مقاله [English]
The Effect of Vitamin D Consumption during Progressive Resistance Training on Malondialdehyde and Creatine Kinase Changes in Untrained Men
نویسندگان [English]
- Fardin Kalvandi 1
- Kamal Aziz bagi 2
- Mohamad ali Azarbayjani 3
- Mohammad Abdi 4
1 . Assistant Professor of Exercise Physiology, Department of Physical Education, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
2 . Assistant Professor of Exercise Physiology, Department of Physical Education, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
3 . Professor of Exercise Physiology, Department of Exercise Physiology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
4 Assistant Professor of Biochemistry, Kurdistan University of Medical Sciences, Sanandaj, Iran
چکیده [English]
Resistance exercises increase oxidative stress and muscle damage. The aim of the present study was to investigate the effect of vitamin D on MDA and CK changes during 8 weeks of progressive resistance training. 40 male subjects (age range 20-25 years) participated in the study voluntarily and were randomly assigned to 4 groups: vitamin D-resistance training (RTD; n=10), placebo-resistance training (RTP; n=10), vitamin D (VD; n=10) and control (con; n=10). Progressive resistance training was performed 3 sessions a week, every other day for 8 weeks with eight movements and increased intensity. Subjects in RTD and VD groups consumed a 50000-IU capsule of vitamin D every two weeks. Blood samples were gathered before and after the training period. Plasma was used to assess CK activity and MDA concentration. Results showed no significant difference among the groups in CK (P˃0.05). However, it was observed that MDA changes in group x time interaction was significant (P=0.001), that is to say MDA concentration significantly decreased in RTD group compared with VD (P=0.017) and control (P=0.034) groups. Also, MDA concentration was significantly lower in RTP than VD in the posttest (P=0.045). However, there was no significant difference between RTD and RTP. Finally, it can be said that the combination of resistance training and vitamin D can decrease lipid peroxidation. However, it seems that resistance training role is very important in this regard.
کلیدواژهها [English]
- Antioxidant supplement
- cell damage
- Lipid Peroxidation
- resistance training
- Goldfarb AH,Garten RS,Chee PD,Cho C,Reeves GV, Hollander DB, Kraemer RR. (2008). "Resistance exercise effects on blood glutathione status and plasma protein carbonyls: Influence of partial vascular occlusion". European Journal of Applied Physiology, 104(5), 813–819.
- Hudson MB, Hosick PA, McCaulley GO, Schrieber L,Wrieden J, McAnulty SR., . . . Quindry, JC. (2008)."The effect of resistance exercise on humoral markersof oxidative stress. Medicine and Science in Sports and Exercise", 40(3), 542–548.
- Clarkson PM,& Thompson HS. (2000). "Antioxidants: What role do they play in physical activity and health?"American Journal of Clinical Nutrition, 72, 637–646.
- Kosmidou I, Vassilakopoulous T, Xagorari A, Zakynthinos S, Papapetropoulos A, & Roussos C. (2002). "Production of interleukin-6 by skeletal myotubes. Role of reactive oxygen species". American Journal of Respiratory Cell and Molecular Biology, 26(5):587-593.
- Meydani M, & Evans WJ. (1993). "Free radicals, exercise, and aging". In B.P. Yu (Ed.), Free radicals in aging (pp.183–204). Boca Raton, FL: CRC Press.
- Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev. 2016; 2016:1245049.
- Bloomer RJ, Fry AC, Falvo MJ, & Moore CA. (2007)." Protein carbonyls are acutely elevated following single set anaerobic exercise in resistance trained men". Journal of Science and Medicine in Sport, 10, 411–417.
- Azizbeigi k, Atashak S, and Stannard S. "Effect of different rest interval lengths of resistance exercise on lipid peroxidation and creatine kinse responses". Kinesiology,47(2015)2:3-10.
- Parise G, Brose AN, & Tarnopolsky MA. (2005). "Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults". Experimental Gerontology. 40(3), 173–180.
- Azizbeigi K, Azarbayjani MA, Atashak S, Stannard SR. Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Research in Sports Medicine. 2015;23(1):73-87.
- Azizbeigi K, Azarbayjani MA, Peeri M, Agha-alinejad H, Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. International Journal of Sport Nutrition and Exercise Metabolism. 2013;23 (3):230-8.
- Taghiyar M, Ghiasvand R, Askari G, Feizi A, Hariri M, Mashhadi NS, Darvishi L. (2013). "the Effect of Vitamin C and E Supplementation on Muscle Damage and Oxidative Stress in Female Athletes": A Clinical Trial. International Journal of Preventive Medicine. S16–S23.
- Jówko E, Długołęcka B, Makaruk B, Cieśliński I. (2015). "The effect of green tea extract supplementation on exercise induced oxidative stress parameters in male sprinters". European Journal of Nutrition. 54(5):783-91.
- Ke CY, Yang FL, Wu WT, Chung CH, Lee RP, Yang WT, Subeq YM, Liao KW. " Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise". International Journal of Medical Sciences. 2016; 13(2): 147–153.
- Zobairi M, Matinhomaeei H, Hatamian H, Azizbeigi K, Azarbayejani M. Effect of Elastic Resistance Training and Vitamin D on Systemic Inflammation Indices in Untrained Men: A Clinical Trial. Caspian Journal of Neurological Sciences. 2017, 196-205.
- Foroozanfard F, Jamilian M, Bahmani F, Talaee R, Talaee N, Hashemi T, Nasri K, Asemi Z, Esmaillzadeh A. (2015). Calcium plus vitamin D supplementation influences biomarkers of inflammation and oxidative stress in overweight and vitamin D-deficient women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Clinical Endocrinology; 83(6):888-94
- Jackson AS, & PollockML. (1985). "Practical assessment of body composition". Journal of Sports Medicine and Physical Fitness, 13, 76–90.
- Brzycki M. (1993). Strength testing: "Predicting a one-rep maxfrom repetitions-to-fatigue". Journal of Physical Education,Recreation& Dance, 64, 88–90.
- Buege JA, and Aust SD. (1978). Microsomal lipid peroxidation. Methods Enzymol. 52:302-310.
- Bhat M, Ismail A. (2015). Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis.The Journal of Steroid Biochemistry and Molecular Biology. 152:171-9.
- Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. (2015). Obesity-Related Oxidative Stress:"the Impact of Physical Activity and Diet Manipulation. sports; 1(1):32.
- Mougios V. (2007). "Reference intervals for serum creatine kinase in athletes". British Journal of Sports Medicine. 41:674-678.
- Nikolaidis MG, Protosygellou MD, Petridou A, Tsalis G, Tsigilis N, Mougios V. (2003). Hematologic and biochemical profile of juvenile and adult athletes of both sexes: implications for clinical evaluation. International Journal of Sports Medicine. 24(7):506-11.
- Brancaccio P, Maffulli N, Limongelli FM. (2007). "Creatine kinase monitoring in sport medicine". British Medical Bulletin. 81-82: 209-230.
- Choi M, Park H, Cho S, Lee M.(2013). "Vitamin D3 supplementation modulates inflammatory responses from the muscle damage induced by high-intensity exercise in SD rats. cytokine.63(1):27-35.
- Wiseman H. (1993)."Vitamin D is a membrane antioxidant Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergo steroland tamoxifen and relevance to anticancer action". FEBS Lett. 1993; 326: 285-8.
- Manna P and Jain S. (2015). "Vitamin D (VD) prevents oxidative stress via regulating NOX4/Nrf2/Trx signaling cascade and up regulates SIRT1-mediated MPK/IRS1/GLUT4 pathway and glucose uptake in high glucose treated 3T3L1 adipocytes". The FASEB Journal, 29:1 Supplement 253.1.
- Larson-Meyer DE, & WillisKS. (2010). "Vitamin D and athletes". Current Sports Medicine Reports, 9, 220–226.