نوع مقاله : مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I

نویسندگان

1 گروه فیزیولوژی ورزشی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران.

2 نویسنده مسئول، گروه فیزیولوژی ورزشی، واحد گیلان غرب، دانشگاه آزاد اسلامی،گیلان غرب، ایران.

3 گروه فیزیولوژی ورزشی، واحد مرودشت، دانشگاه آزاد اسلامی ، مرودشت، ایران.

چکیده

مقدمه: هدف از پژوهش بررسی رابطه ژنوتیپ های مر تبط با ژن های HIF1-α و VEGF با تغییرات توان هوازی به دنبال هشت هفته تمرین استقامتی با شدت متوسط در زنان غیر فعال بود.
روش پژوهش: 23 زن غیر فعال 34 تا 43 ساله به صورت غیر هدفمند در دسترس انتخاب و 8 هفته تمرین هوازی هر هفته 5 جلسه و هر جلسه 30 دقیقه با شدت55% تا 75% ضربان قلب بیشینه انجام دادند. قبل و بعد از دوره تمرین، توان هوازی توسط آزمون برووس اندازه گیری شد. نمونه بزاقی اخذ و ژنوتیپ­های مختلف ژنهای ژن HIF1- α   شامل CC و  ژنوتیپ­های مختلف ژن VEGF شامل GG، CG و CC  اندازه گیری شد، از روشهای آماری تی زوجی و آنوا برای تغییرات میانگین های توان هوازی و برای بررسی ژنوتیپ ها از روش RLFP استفاده شد.
یافته‌ها: نتایج تغییرات توان هوازی آزمودنی ها و بررسی رابطه ژنوتیپ های مختلف ژنهای VEGFو HIF1-a  به دنبال هشت هفته تمرین استقامتی با شدت متوسط در ارتباط با ژنو تیپ های CC و CT ژن HIF1- α   در ژنوتیپCT برابر با(529/0P=) و ژنوتیپ های GG و CC و CGژن VEGF ژنوتیپ  CGبرابر با (873/0P=) بوده که ژنوتیپ CT ژن HIF1-α  بیشترین افزایش را داشته  اما این افزایش معنا دار نبوده است.
نتیجه‌گیری: هشت هفته تمرین استقامتی با شدت متوسط موجب افزایش توان هوازی در رابطه با پروفایل های ژنی ژن هایHIF1-α  و VEGF  در زنان غیر فعال چاق شده اما تغییرات توان هوازی در ارتباط با  پروفایل‌های ژنی
ژن‌های مزبور  معنادار نمی باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Association of Different HIF1-α and VEGF Gene Genotypes with Changes in Aerobic Capacity Following Moderate-Intensity Endurance Training in Inactive Women -A Pilot Study

نویسندگان [English]

  • Parviz Shojaei 1
  • Mehran Ghahramani 2
  • Sirous Farsi 3

1 Department of Exercise Physiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran.

2 Corresponding Author, Department of Exercise Physiology, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran

3 Department of Exercise Physiology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.

چکیده [English]

Introduction: This research aimed to investigate the relationship between HIF1-α and VEGF gene genotypes and changes in aerobic capacity following eight weeks of moderate-intensity endurance training in inactive women.
Methods: Twenty-three inactive women aged 34 to 43 years old were conveniently selected and performed aerobic training for eight weeks and five 30-minute sessions per week with an intensity of 55% to 75% of maximum heart rate. Before and after the training period, aerobic capacity was measured by the Bruce test. A saliva sample was taken and different genotypes of the HIF1-α gene including CC and different genotypes of the VEGF gene including GG, CG, and CC were measured. Statistical methods of Paired t-test and ANOVA were used to observe mean differences in aerobic capacity and the Restriction Fragment Length Polymorphism (RLFP) method was used to check genotypes.
Results: The results of changes in the aerobic capacity of the subjects and investigation of the relationship between the different genotypes of VEGF and HIF1-α genes following eight weeks of moderate-intensity endurance training, the aerobic capacity of CC and CT genotypes of the HIF1-α gene were equal pre and post-intervention (p=0.529). Also, GG, CC, and CG genotypes of the VEGF gene were equal to the CG genotype (p=0·873). The CT genotype of the HIF1-α gene has the most increase, but this increase was not significant.
 Conclusion: Therefore, Eight weeks of moderate-intensity endurance training increases the aerobic capacity of HIF1-a and VEGF gene profiles in inactive obese women, but the changes in aerobic capacity of these gene profiles are not significant.

کلیدواژه‌ها [English]

  • Aerobic power
  • Angiogenesis
  • Genotype
  • HIF1-α
  • VEGF
  1. World Health Organ Tech Rep Ser. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. 2000.
  2. Ogunbode A, Ajayi I, Ladipo M, Fatiregun A. Obesity: An emerging disease. Niger J Clin Pract [Internet]. 2011;14(4):390.
  3. Vineis P, Avendano-Pabon M, Barros H, Bartley M, Carmeli C, Carra L, et al. Special Report: The Biology of Inequalities in Health: The Lifepath Consortium. Front Public Heal [Internet]. 2020 May 12;8.
  4. Pérusse L, Rankinen T, Hagberg\ JM, Loos RJF, Roth SM, Sarzynski MA, et al. Advances in Exercise, Fitness, and Performance Genomics in 2012. Med Sci Sport Exerc [Internet]. 2013 May;45(5):824–31.
  5. Lundby C, Calbet JAL, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci [Internet]. 2009 Nov 10;66(22):3615–23.
  6. Prior SJ, Hagberg JM, Phares DA, Brown MD, Fairfull L, Ferrell RE, et al. Sequence variation in hypoxia-inducible factor 1α ( HIF1A ): association with maximal oxygen consumption. Physiol Genomics [Internet]. 2003 Sep 29;15(1):20–6.
  7. Chilov D, Camenisch G, Kvietikova I, Ziegler U, Gassmann M, Wenger RH. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J Cell Sci [Internet]. 1999 Apr 15;112(8):1203–12.
  8. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, et al. Exercise promotes angiogenesis and improves β-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res [Internet]. 2008 May 1;78(2):385–94.
  9. Silva JFR da, Rocha NG, Nóbrega ACL da. Mobilization of endothelial progenitor cells with exercise in healthy individuals: a systematic review. 2012;98(2):182–91.
  10. Dengler VL, Galbraith MD, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol [Internet]. 2014 Jan 7;49(1):1–15.
  11. Hassan AF, Kamal MM. Effect of Exercise Training and Anabolic Androgenic Steroids on Hemodynamics , Glycogen Content , Angiogenesis and Apoptosis of Cardiac Muscle in Adult Male Rats. Int J Health Sci (Qassim) [Internet]. 2013 Jan;7(1):47–60.
  12. Farhadi H, Siahkohian M, Bolboli L, Karimi P. Effects of aerobic training and hypoxia on expression angiogenic factors in cardiac male Wistar rats. J Sport Biomotor Sci. 2015;8(16):70–9. (In Persian).
  13. Boutcher SH, Park Y, Dunn SL, Boutcher YN. The relationship between cardiac autonomic function and maximal oxygen uptake response to high-intensity intermittent-exercise training. J Sports Sci [Internet]. 2013 May;31(9):1024–9.
  14. Hudlicka O, Brown MD. Adaptation of Skeletal Muscle Microvasculature to Increased or Decreased Blood Flow: Role of Shear Stress, Nitric Oxide and Vascular Endothelial Growth Factor. J Vasc Res [Internet]. 2009;46(5):504–12.
  15. Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol Physiol [Internet]. 1996 Oct 1;271(4):C1172–80.
  16. Gavin TP, Wagner PD. Effect of short-term exercise training on angiogenic growth factor gene responses in rats. J Appl Physiol [Internet]. 2001 Apr 1;90(4):1219–26.
  17. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Circ Physiol [Internet]. 2006 Sep;291(3):H1290–8.
  18. Duggan C, Xiao L, Wang C-Y, McTiernan A. Effect of a 12-Month Exercise Intervention on Serum Biomarkers of Angiogenesis in Postmenopausal Women: A Randomized Controlled Trial. Cancer Epidemiol Biomarkers Prev [Internet]. 2014 Apr 1;23(4):648–57.
  19. Hamel P, Simoneau JA, Lortie G, Boulay MR, Bouchard C. Heredity and muscle adaptation to endurance training. Med Sci Sports Exerc. 1986;18(6):690–6.
  20. Sarzynski MA, Rankinen T, Sternfeld B, Grove ML, Fornage M, Jacobs DR, et al. Association of Single-Nucleotide Polymorphisms From 17 Candidate Genes With Baseline Symptom-Limited Exercise Test Duration and Decrease in Duration Over 20 Years. Circ Cardiovasc Genet [Internet]. 2010 Dec;3(6):531–8.
  21. Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, et al. Genes to predict VO2max trainability: a systematic review. BMC Genomics [Internet]. 2017 Nov 14;18(S8):831.
  22. Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans [Internet]. 2009 Dec 1;37(6):1167–70.
  23. Zadro JR, Shirley D, Andrade TB, Scurrah KJ, Bauman A, Ferreira PH. The Beneficial Effects of Physical Activity: Is It Down to Your Genes? A Systematic Review and Meta-Analysis of Twin and Family Studies. Sport Med - Open [Internet]. 2017 Dec 10;3(1):4.
  24. Bassett DR. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sport Exerc [Internet]. 2000 Jan;70.

25.Bouchard C. Genomic predictors of trainability. Exp Physiol [Internet]. 2012 Mar;97(3):347–52.

  1. Mounier R, Pialoux V, Roels B, Thomas C, Millet G, Mercier J, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol [Internet]. 2009 Mar 19;105(4):515–24.
  2. Slivka DR, Heesch MWS, Dumke CL, Cuddy JS, Hailes WS, Ruby BC. Human Skeletal Muscle mRNA Response to a Single Hypoxic Exercise Bout. Wilderness Environ Med [Internet]. 2014 Dec;25(4):462–5.
  3. Yaghoob Nezhad F, Verbrugge SAJ, Schönfelder M, Becker L, Hrabě de Angelis M, Wackerhage H. Genes Whose Gain or Loss-of-Function Increases Endurance Performance in Mice: A Systematic Literature Review. Front Physiol [Internet]. 2019 Mar 22;10.
  4. Breier G. Angiogenesis in Embryonic Development—A Review. Placenta [Internet]. 2000 Mar;21:S11–5.
  5. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Häkkinen K, et al. Adverse Metabolic Response to Regular Exercise: Is It a Rare or Common Occurrence? Li S, editor. PLoS One [Internet]. 2012 May 30;7(5):e37887.
  6. Brixius K, Schoenberger S, Ladage D, Knigge H, Falkowski G, Hellmich M, et al. Long-term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50-60 years. Br J Sports Med [Internet]. 2007 Jun 4;42(2):126–9.
  7. Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, et al. Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J [Internet]. 2005 May;19(7):750–60.