تأثیر دوازده هفته تمرین تناوبی شدید بر پویایی میتوکندریایی میوسیت‌های قلبی رت‌های دیابتی نوع2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد دانشکده تربیت بدنی و علوم ورزشی دانشگاه تهران، تهران، ایران

2 استاد تمام دانشکده تربیت بدنی و علوم ورزشی دانشگاه تهران، تهران، ایران

چکیده

هدف از پژوهش حاضر بررسی تأثیر 12 هفته تمرین تناوبی شدید بر بیان ژن‌های DRP1, MFN2 و OPA1 در عضلۀ قلبی رت‌های نر ویستار دیابتی نوع 2 بود. بدین‌منظور 20 سر رت 10 هفته‌ای (با میانگین وزن 20±220 گرم) به‌صورت تصادفی به 2 گروه 10 تایی کنترل دیابتی و دیابتی با تمرین تناوبی شدید تقسیم شدند. برنامۀ تمرینی به مدت 12 هفته و هفته‌ای 5 جلسه با مدت و سرعت مشخص اجرا شد. 48 ساعت پس از آخرین جلسۀ تمرینی، عضلۀ بطن قلب حیوانات از بطن جهت آزمایش‌های ژنتیک جدا شد. نتایج پژوهش با استفاده از آزمون T مستقل (05/0P≤) تجزیه‌وتحلیل شد. نتایج نشان داد که تفاوت معناداری در بیان ژن MFN2 میان گروه‌های کنترل دیابتی و دیابتی تمرینی وجود نداشت (337/0=P)، اما 12 هفته تمرین به افزایش معنادار بیان ژن پروتئین‌های DRP1 (001/0=P) و OPA1 (001/0=P) در رت‌های دیابتی منجر شد. به‌طور کلی می‌توان گفت که تمرین ورزشی تناوبی شدید ممکن است بیان ژن‌های مربوط به پویایی میتوکندریایی را در بیماری دیابت به‌طور مثبتی تنظیم کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of 12 Weeks of High Intensity Interval Training on Mitochondrial Dynamics in Cardiac Myocytes of Type 2 Diabetic Rats

نویسندگان [English]

  • Saghi Zafaranieh 1
  • Rahman Soori 2
1 M.Sc., Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran,
2 Professor, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
چکیده [English]

The aim of this study was to investigate the effect of 12 weeks of high intensity interval training (HIIT) on gene expression of DRP1, MFN2 and OPA1 in cardiac muscle of type 2 diabetic male Wistar rats. Therefore, 20 rats (age: 10 weeks old and mean weight: 220±20 g) were divided randomly into 2 groups: diabetic control (n=10) and diabetic HIIT (n=10). The training protocol was performed for 12 weeks, 5 days a week with specific duration and intensity. 48 hours after the last training session, ventricular cardiac samples were obtained for further genetic experiments. Independent t test was used for data analysis (P≤0.05). The results showed no significant difference in MFN2 gene expression between diabetic control and diabetic HIIT groups (P=0.337). But 12 weeks of training significantly increased gene expression of DRP1 (P=0.001) and OPA1 (P=0.001) proteins in diabetic rats. It can be generally stated that HIIT may positively regulate gene expression of mitochondrial dynamics in diabetes.

کلیدواژه‌ها [English]

  • diabetes
  • gene expression
  • interval training
  • Mitochondrial Dynamics
1.   Zorzano A, Liesa M, Palacín M. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol [Internet]. 2009;41(10):1846–54. Available from: http://www.sciencedirect.com/science/article/pii/ S1357272509000764
2.   Ishihara N, Otera H, Oka T, Mihara K. Regulation and Physiologic Functions of GTPases in Mitochondrial Fusion and Fission in Mammals. Antioxid Redox Signal. 2012;19(4):121001062245003.
3.   Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med [Internet]. 2013;369(23):2236–51. Available from: http://www.ncbi.nlm. nih.gov/pubmed/24304053
4.   Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200.
5.   Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927–32.
6.   Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci [Internet]. 2001;114(Pt 5):867–74. Available from:http://eutils.ncbi.nlm.nih.gov/ entrez/eutils/elink. fcgi?dbfrom=pubmed&id= 11181170&retmode=ref&cmd=prlinks%5 Cnpapers2://publication/uuid/9C312C9A-C5D5-46CF-8244-7264815A8EDB
7.   Yoon Y, Krueger EW, Oswald BJ, McNiven MA. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol [Internet]. 2003;23(15):5409–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12861026%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC165727
8.   Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (80- ) [Internet]. 2012;337(6098):1062–5. Available from: http://www.ncbi.nlm.nih.gov/entrez/ query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22936770
9.   Kirkwood SP, Munn EA, Brooks GA. Mitochondrial reticulum in limb skeletal muscle. Am J Physiol [Internet]. 1986;251(3 Pt 1):C395-402. Available from: http://ajpcell.physiology. org/content/251/3/C395.abstract
10.           Bakeeva LE, Chentsov YS, Skulachev VP. Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. BBA - Bioenerg. 1978;501(3):349–69.
11.           Wai T, Langer T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol Metab [Internet]. 2016;27(2):105–17. Available from: http://linkinghub.elsevier.com/ retrieve/pii/S1043276015002362
12.           Lee Y, Jeong S, Karbowski M, Smith C, Youle R. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. 2004;15(11):5001–15.
13.           Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care [Internet]. 2010;33(3):645–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 20032281
14.           Mootha VK, Lindgren CM, Eriksson KF. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. … Genet [Internet]. 2003;34(3):267–73. Available from: http://www.nature.com/doifinder/10.1038/ng1180%5 Cnpapers3://publication/doi/10.1038/ng1180
15.           Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A [Internet]. 2003;100(14):8466–71. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=166252 &tool=pmcentrez&rendertype=abstract
16.           Jiang HK, Wang YH, Sun L, He X, Zhao M, Feng ZH, et al. Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: Roles of mitochondrial network dynamics. Int J Mol Sci. 2014;15(4):5304–22.
17.           Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J, et al. Expression of Mfn2, the Charcot-Marie-Tooth Neuropathy Type 2A Gene, in Human Skeletal Muscle. Diabetes [Internet]. 2005;54(9):2685–93. Available from: http://diabetes.diabetesjournals.org/ content/54/9/2685.abstract
18.           Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: A novel regulatory mechanism altered in obesity. J Biol Chem. 2003;278(19):17190–7.
19.           Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A [Internet]. 2012;109(14):5523–8. Available from: http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=3325712&tool=pmcentrez&rendertype=abstract
20.           Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress - Activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Vol. 52, Diabetes. 2003. p. 1–8.
21.           Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol [Internet]. 2010;588(Pt 23):4795–810. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3010147& tool=pmcentrez&rendertype=abstract
22.           Bo H, Zhang Y, Ji LL. Redefining the role of mitochondria in exercise: A dynamic remodeling. In: Annals of the New York Academy of Sciences. 2010. p. 121–8.
23.           Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, et al. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta - Gen Subj. 2010;1800(3):250–6.
24.           Pierre W, Gildas AJH, Ulrich MC, Modeste W-N, Benoît NT, Albert K. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complement Altern Med [Internet]. 2012;12:264. Available from:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3546073&tool= pmcentrez &rendertype=abstract
25.           Ghardashi Afousi A, Choobineh S, Gaeini AA, Javidi M, Fallahi AA. High Intensity Interval Training(HIIT):Beneficial or Harmful?An investigation of bone mass density changes after high intensity interval training in adult male wistar rats. J Sport Biosci. 2015;7(2):211–23. (inpersian)
26.           Mogharnasi M, Gaeini AA, Sheikholeslami Vatani D. The effect of a period of detraining followed by aerobic exercise on novel inflammatory markers. Res Sport Sci. 1388;3(24). (inpersian)
27.           Lawler JM, Powers SK, Hammeren J, Martin AD. Oxygen cost of treadmill running in 24-month-old Fischer-344 rats. Med Sci Sports Exerc. 1993;25(11):1259–64.
28.           Gaeini AA, Bahramian A, Javidi M. The effect of eight weeks of resistance training on stimulatory and inhibitory factors of cardiac microvascular injuries in wistar diabetic rats. JME. 2013;3(1):21–32. (inpersian)
29.           Jorge L, Paulini J, Silva C, Rampaso R, Luiz R, Lima W, et al. Exercise Training Improves Cardiac Mitofusin 2 Expression In Diabetes. Hypertension. 2013;62:613.
30.           Walder K, Kerr-Bayles L, Civitarese A, Jowett J, Curran J, Elliott K, et al. The mitochondrial rhomboid protease PSARL is a new candidate gene for type 2 diabetes. Diabetologia. 2005;48(3):459–68.
31.           Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise Training Decreases Activation of the Mitochondrial Fission Protein Dynamin-Related Protein-1 in Insulin Resistant Human Skeletal Muscle. J Appl Physiol [Internet]. 2014; Available from: http://www.ncbi.nlm. nih.gov/pubmed/24947026
32.           Pautasso M, Sciarretta S, Zhai P, Volpe M, Sadoshima J, Perrotta I, et al. Pharmacological Modulation of Autophagy During Cardiac Stress. J Cardiovasc Pharmacol. 2013;9(3):7–10.
33.           Wang K, Klionsky DJ. Mitochondria removal by autophagy. Vol. 7, Autophagy. 2011. p. 297–300.
34.           Yan Z, Lira VA, Greene NP. Exercise training-induced Regulation of Mitochondrial Quality. Exerc Sport Sci Rev [Internet]. 2012;40(3):159–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22732425%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3384482%5Cnhttp://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003677-900000000-99952
35.           Ikeda Y, Sciarretta S, Nagarajan N, Rubattu S, Volpe M, Frati G, et al. New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxid Med Cell Longev. 2014;2014.
36.           Chen Y, Liu Y, Dorn GW. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109(12):1327–31.
37.           Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, et al. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem. 2012;287(28):23615–25.
38.           Shen T, Zheng M, Cao C, Chen C, Tang J, Zhang W, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61.