نوع مقاله : مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I

نویسندگان

1 .دانشجوی دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزش، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه گیلان، ایران

2 دکتری تخصصی، استاد، گروه فیزیولوژی ورزش، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه گیلان، ایران

چکیده

مقاومت به انسولین ناشی از مصرف مواد غذایی پرچرب، با متابولیت‌های چربی درون‌عضلانی ارتباط دارد. هدف از مطالعۀ حاضر، بررسی اثر تمرین هوازی، محدودیت رژیم غذایی و ترکیب آنها بر مقاومت به انسولین از طریق تغییرات دی آسیل گلسیرول درون‌عضلانی در موش‌های صحرایی نر چاق بود. از 56 سر موش صحرایی نر نژاد ویستار با میانگین وزن 6/12±5/194 گرم به‌عنوان نمونه استفاده شد. 48 سر موش به مدت 18 هفته رژیم غذایی پرچرب مصرف کردند و به 8 سر موش غذای نرمال داده شد. سپس، موش‌های تحت رژیم غذایی پرچرب، به گروه­های کنترل، تمرین هوازی، محدودیت رژیم غذایی و ترکیبی (تمرین هوازی و محدودیت رژیم غذایی) تقسیم شدند. گروه تمرین هوازی به مدت 10 هفته و با شدت 28 متر بر دقیقه دویدند. گروه محدودیت رژیم غذایی 25 درصد از غذای مصرفی‌شان کاسته شد و گروه ترکیبی، به‌صورت یک روز در میان تحت تمرین هوازی و محدودیت رژیم غذایی قرار گرفتند. نتایج مطالعۀ حاضر نشان داد که وزن موش‌ها پس از 18 هفته مصرف رژیم غذایی پرچرب افزایش یافت (05/0>P). همچنین، تفاوت معنا‌داری بین سطوح دی آسیل گلیسرول عضله و سطوح سرمی انسولین، گلوکز و شاخص مقاومت به انسولین گروه‌های تمرین هوازی، محدودیت کالری و ترکیبی با گروه غذای پرچرب وجود دارد (05/0>P). سطوح PKC-θ در گروه‌های تعادل منفی انرژی کاهش یافت (05/0>P) و تفاوت معنا­داری بین سطوح GLUT4 گروه‌های تمرین هوازی و ترکیبی در مقایسه با گروه غذای پرچرب، مشاهده شد (05/0>P). نتایج این مطالعه نشان داد که روش­های تعادل منفی انرژی حتی همراه با مصرف غذای پرچرب می­تواند سبب کاهش دی آسیل گلیسرول عضلۀ اسکلتی شود که تا حد زیادی با بهبود مقاومت به انسولین همسوست.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Aerobic Exercise and Calorie Restriction on Intramuscular GLUT4 and DAG Levels in Obese Male Rats

نویسندگان [English]

  • Aboozar Jorbonian 1
  • Hamid Mohebbi 2

1 PhD Student of Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Iran

2 Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Iran

چکیده [English]

Insulin resistance induced by a high fat diet has been associated with intramuscular lipid metabolites. The aim of this study was to investigate the effect of aerobic exercise, diet restriction and their combination on insulin resistance through intramuscular diacylglycerol changes in obese male rats. Sample consisted of 56 male Wistar rats (mean weight: 194.5±12.6 g). 48 rats had a high-fat diet for 18 weeks and 8 rats had normal diet. Then, high-fat diet rats were divided into control (C), aerobic Exercise (E), caloric restriction (CR), and a combination (aerobic Exercise + caloric restriction (E+C) groups. E group ran on a treadmill at 28 m. per minute for 10 weeks. In CR group, 25% of their daily caloric ingestion reduced and E+C group had aerobic exercise and caloric restriction every other day. The results indicated that rats gained weight after 18 weeks of high-fat diet (P<0.05). Also, there was a significant difference in muscle DAG and serum levels of insulin, glucose and insulin resistance index between aerobic exercise, calorie restriction and combination groups and high-fat group (P<0.05). PKC-θ levels decreased in negative energy balance groups (P>0.05). Also, there was a significant difference between E and E+C groups and high-fat diet group in GLUT4 levels (P>0.05). This study indicated that negative energy balance methods can decrease skeletal muscle DAG even along with a high-fat diet which is largely congruent with an improvement in insulin resistance.

کلیدواژه‌ها [English]

  • aerobic exercise
  • calorie restriction
  • GLUT4
  • negative energy balance
  • Obesity
  1.  

    1. Argentino, D. P., Dominici, F. P., Munoz, M.C., Al-Regaiey, K., Bartke, A., & Turyn, D. 2005. Effects of long-term caloric restriction on glucose homeostasis and on the first steps of the insulin signaling system in skeletal muscle of normal and  Ames  dwarf  (Prop1df/Prop1df)  mice.  Exp  Gerontol, 40, 27-35.
    2. Argentino, D. P., Dominici, F.P., Al-Regaiey, K., Bonkowski, M.S., Bartke, A., & Turyn, D. 2005. Effects of long-term caloric restriction  on  early  steps  of  the  insulin-signaling  system in mouse skeletal muscle. J Gerontol A Biol Sci Med Sci ,60, 28-34.
    3. Augustin,  R. 2010.  The  protein  family  of  glucose  transport facilitators: It’s not only about glucose after all. IUBMB Life, 62, 315-33.
    4.  Balage, M., Grizard, J., Manin, M. 1990. Effect of calorie restriction on skeletal muscle and liver insulin binding in growing rat. Horm Metab Res, 22, 207-214.
    5. Cartee, G. D. 2008. Exercise and calorie restriction use different mechanisms to improve insulin sensitivity. In: Hawley JA and Zierath JR, ed. Physical Activity and Type 2 Diabetes. Champaign, IL: Human Kinetics, 119-134.
    6. Cartee, G.D., E.W. Kietzke, and C. Briggs-Tung. 1994. Adaptation of muscle glucose transport with caloric restriction in adult, middle-aged, and old rats. Am J Physiol 266:R1443-7.
    7. Chibalin, A. V., Yu, M., Ryder, J. W., Song, X. M., Galuska, D., Krook, A., Wallberg-Henriksson, H., & Zierath, J. R. 2000. Exercise-induced  changes  in  expression  and  activity  of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2. Proc Natl Acad Sci USA, 97, 38-43.
    8. Coen, P. M., Dubé, J. J., Amati, F., Stefanovic-Racic, M., Ferrell, R. E., Toledo, F. G., & Goodpaster, B. H. 2010. Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes, 59, 80-88.
    9. Cox, K.L., Burke, V., Morton, A. R., Beilin, L. J., & Puddey, I.B. 2004. Independent and additive effects of energy restriction and exercise on glucose and insulin concentrations in sedentary overweight men. Am J Clin Nutr, 80, 308-16.
    10. Davidson,  R. T.,  Arias, E. B., &  Cartee, G.D.  2002.  Calorie restriction increases muscle insulin action but not IRS-1-, IRS-2-, or phosphotyrosine-PI 3-kinase. Am J Physiol Endocrinol Metab, 282, 270-6.
    11. De Fronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. 1981. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30, 1000-7.
    12. Escrivá, F., Gavete, M. L., Fermín, Y., Pérez, C., Gallardo, N., Alvarez, C., Andrés, A., Ros, M., Carrascosa, J. M. 2007. Effect of age and moderate food restriction on insulin sensitivity in Wistar rats: role of adiposity. J Endocrinol, 194, 131-41.
    13. Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clinical chemistry. 18(6), 499-502.
    14. Frosig, C., Rose, A. J., Treebak, J. T., Kiens, B., Richter, E. A., & Wojtaszewski, J. F. 2007. Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes, 56, 2093-2102.
    15. Garekani, E. T., Mohebbi, H., Kraemer, R. R., and Fathi, R. 2011. Exercise training intensity/volume affects plasma and tissue adiponectin concentrations in the male rat. Peptides, 32, 1008-12.
    16. Gazdag,  A. C., Sullivan, S., Kemnitz, J. W., & Cartee, G.D. 2000. Effect of long-term caloric restriction on GLUT4, phosphatidylinositol-3 kinase p85 subunit, and insulin receptor substrate-1 protein levels in rhesus monkey skeletal muscle. J Gerontol A Biol Sci Med Sci, 55, 44-8.
    17. Griffin, M. E., Marcucci, M. J., Cline, G. W., Bell, K., Barucci, N., Lee, D., Goodyear, L. J., Kraegen, E. W., White, M. F., & Shulman, G. I. 1999. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 48, 1270-1274.
    18. Han, D.H., Hansen, P. A., Chen, M. M., &  Holloszy, J. O. 1998. DHEA  treatment  reduces  fat  accumulation  and  protects against insulin resistance in male rats. J Gerontol A Biol Sci Med Sci, 53, 19-24.
    19. Hoeg, L.D., Sjoberg, K. A., Jeppesen, J., Jensen, T. E., Frosig, C., Birk, J. B., Bisiani, B., Hiscock, N., Pilegaard, H., et al. 2011. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes, 60, 64-73.
    20. Janssen, I., Fortier, A., Hudson, R., & Ross, R. 2002. Effects of an energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care, 25, 431-8.
    21. Johnson, N. A., Sachinwalla, T., Walton, D. W., Smith, K., Armstrong, A., et al. 2009. Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology, 50, 1105-12.
    22. Jornayvaz, F. R., & Shulman, G. I. 2012. Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance. Cell Metab, 15, 574-584.
    23. Luciano, E., Carneiro, E. M., Carvalho, C. R., Carvalheira, J. B., Peres, S. B., Reis, M. A., Saad, M. J., Boschero, A. C., & Velloso, L. A.  2002.  Endurance  training  improves  responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway. Eur J Endocrinol, 147, 149-57.
    24. McCurdy, C. E, Davidson, R. T, Cartee, G. D. 2003. Brief calorie restriction increases Akt2 phosphorylation in insulin-stimulated rat skeletal muscle. Am J Physiol Endocrinol Metab, 285, 693-700.
    25. Muoio, D. M., & Newgard, C. B. 2008. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol, 9, 193-205.
    26. Murphy, J. C., McDaniel, J. L., Mora, K., Villareal, D. T., Fontana, L., et al. 2012. Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction. J Appl Physiol, 112, 79-85
    27. Randle, P. J., Garland, P. B., Hales, C. N., Newsholme, E. A. 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1, 785-9.
    28. Rogério, A. L., Paulino, E. C., Brum, P. C., Andreotti, S., Lima, F. B., & Negrão, C.E. 2015. Exercise training and caloric restriction reduce adiposity index and hepatic lipids in obese rats, Immunoendocrinology, 2, 1053.
    29. Salehi,  I.,  Mohammadi,  M.,  Farajnia,  S.,  Ghadiri  Soufi,  F., Badalzadeh,  R.,  & Vatankhah,  A. M. 2007. Effect  of  regular  swimming  on  oxidative  stress  and  atherogenic  index  in blood of diabetic male rats. Sci J Hamdan Uni Med Sci, 14, 29-35. [Farsi]
    30. Samjoo, I. A., Safdar, A., Hamadeh, M. J., Raha, S., & Tarnopolsky, M. A. 2013. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes, 3:88
    31. Sharma, N., Arias, E. B., Bhat, A. D., Sequea, D. A., Ho, S., Croff, K. K., et al. 2011. Mechanisms for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and slow-twitch skeletal muscles of calorie-restricted rats. American journal of physiology Endocrinology and metabolism, 300, 966-978.
    32. Skovbro, M., Baranowski, M., Skov-Jensen, C., Flint, A., Dela, F., Gorski, J & Helge JW. 2008. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia, 51, 1253-60.
    33. Szendroedi. J., Yoshimura, T., Phielix, E., Koliaki, C., Marcucci, M., Zhang, D., Jelenik, T., Müller, J. 2014. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci USA, 111, 9597-9602.
    34. Timmers, S., De Vogel-van den Bosch, J., Hesselink, M. K., Van Beurden, D., Schaart, G., Ferraz, M.J., Losen, M., et al. 2011. Paradoxical increase in TAG and DAG content parallel the insulin sensitizing effect of unilateral DGAT1 overexpression in rat skeletal muscle. PLoS One, 6, 14503.
    35. Viviane Z. R., & Eduardo, J. F. 2011. Review Article- Inflammatory Concepts of Obesity. international Journal of Inflammation, 29, 415-430.
    36. Willis, P. E., Chadan, S. G., Baracos, V., & Parkhouse, W. S. 1998. Restoration of insulin-like growth factor I action in skeletal muscle of old mice. Am J Physiol, 275, 525-30.
    37. Wright, D. C., Hucker, K. A., Holloszy, J. O., & Han, D. H. 2004. Ca2+  and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes, 53, 330-5.
    38. Yeh, J. I., Gulve, E. A., Rameh, L., & Birnbaum, M. J. 1995. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem, 270, 2107-11.
    39. Chunli, Y., Chen, Y., Cline, G. W., Zhang, D., Zong, H., Wang, Y., Bergeron, R., Kim, J. K., Cushman, S. W., Cooney, G. J., Atcheson, B., White, M. F, et al. 2002. Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle, J Biol Chem, 277, 50230-36.
    40. Yamashita, A. S., Lira, F. S., Rosa, J. C., Paulino, E. C., Brum, P. C.,Negrão, C. E., et al. 2010. Depot-specific modulation of adipokine levels in rat adipose tissue by diet-induced obesity: The effect of aerobic training and energy restriction, Cytokine. 52(3), 168-74.