تأثیر فعالیت متناوب با شدت بالا در شرایط هایپوکسی نورموباریک و نورموکسی بر پاسخ فاکتور رشد اِندوتلیال عروقی سرم در مردان غیرفعال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران

2 کارشناس‌ارشد فیزیولوژی و تغذیۀ ورزشی دانشگاه تهران، تهران، ایران

3 عضو هیأت علمی فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

هدف از پژوهش حاضر، بررسی تأثیر فعالیت متناوب با شدت بالا (HIE) در شرایط هایپوکسی و نورموکسی بر پاسخ VEGF سرم مردان غیرفعال است. به این منظور 9 مرد جوان غیرفعال (سن 5±50/24 سال، قد 6/4±22/174سانتی‌‌‌متر، وزن 5/4±75/70 کیلوگرم و حداکثر بازده کاری (Wmax) در شرایط هایپوکسی 04/29±185 و در شرایط نورموکسی 8/31±0/200) به‌عنوان آزمودنی انتخاب شدند. آزمودنی‌ها، پروتکل فعالیت متناوب با شدت بالا را در شرایط هایپوکسی نورموباریک (3/15 تا 5/15درصد اکسیژن تقریباً برابر ارتفاع 2500 متر) و همین پروتکل را در شرایط نورموکسی در دو هفتۀ مجزا اجرا کردند. نمونه‌های خونی قبل، بلافاصله و 2 ساعت پس از فعالیت گرفته شد. نتایج آزمون تحلیل واریانس با اندازه‌گیری‌های مکرر نشان داد که بین شرایط محیطی مختلف (هایپوکسی و نورموکسی)، در میزان اثرگذاری بر سطوح VEGF سرمی مردان غیرفعال اختلاف معنادار وجود ندارد (452/0P=). مداخلات تمرینی و مطالعات بسیاری برای مشخص شدن مویرگ‌زایی در بدن نیاز است؛ اگرچه سطوح بالای VEGF پس از فعالیت متناوب با شدت بالا ممکن است به افزایش آنژیوژنز و مویرگ‌زایی منجر شود. به هر حال برای مشخص شدن محرک‌ها و سازوکارهایی که برای رشد عروق جدید در تمرینات با شدت بالا گزارش شده، به تحقیقات بیشتری نیاز است.
 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of high intensity intermittent exercise (HIE) in Hypoxia and normoxia on response of Vascular Endothelial Growth Factor in non-athletic men

نویسندگان [English]

  • Aliasghar Ravasi 1
  • yaghob mehrialvar 2
  • Sajad Ahmadizade 3
  • Sajad Hasanvand 2
1 Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
2 Master of Science Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3 . Assistant Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Shahid Beheshti , Tehran, Iran
چکیده [English]

The purpose of present research was to investigate the effect of high-intensity interval exercise (HIE) in hypoxia and normoxia conduction on response of serum VEGF in inactive men. To this end, nine inactive young men (age 24.50±5 years, height 174.22±4/6 cm, weight 70.75±4.5 kg and maximum word output (W max) in hypoxia conduction 185±29/04 and normoxia 200.00±31/8) were selected as subjects. Subjects performed protocol of high-intensity exercise in normobaric normoxia conduction (%15/3-15/5 O2 altitude of approximately 2500 m) and hypoxia in two separate weeks. Blood samples was taken immediately before and 2 hours after exercise. The ANOVA technique with repeated measures was used to analyze the data(P=0/452). Training interventions and a lot study are needed to determine angiogenesis in human body. Although high levels of VEGF after high-intensity exercise may be leading to increased angiogenesis. However, future studies are needed to determine the drivers and mechanisms that have been reported for new vascular growth in high-intensity exercise.
 
 
 
 
 

کلیدواژه‌ها [English]

  • angiogenesis
  • high-intensity intermittent exercise
  • hypoxia
  • vascular endothelial growth factor
 

  1. Amaral, S. Sanchez, L. Chang, A. Rossoni, L. Michelini, L (2008). Time course of training-induced microcirculatory changes and of VEGF expression in skeletal muscles of spontaneously hypertensive female rats. Brazilian Journal of Medical and Biological Research41(5), 424-431.
  2. Bloor, C. M. (2005). Angiogenesis during exercise and training. Angiogenesis,8(3), 263-271.
  3. Brown, M. D., & Hudlicka, O. (2003). Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis6(1), 1-14.
  4. Celik, I., Sürücü, O., Dietz, C., Heymach, J. V., Force, J., Höschele, I. Kisker, O. (2005). Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer research65(23), 11044-11050.
  5. Davis, P. G., Wideman, L., Bloomer, R. J., Consitt, L. A., Weaver, R. (2002). Acute effect of prolonged cycle ergometer exercise on plasma vascular endothelial growth factor. Medicine & Science in Sports & Exercise,34(5),30-40
  6. Egginton, S. (2009). Invited review: activity-induced angiogenesis. Pflügers Archiv-European Journal of Physiology457(5), 963-977.
  7. Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature medicine9(6), 669-676.
  8. Gavin, T. P., Drew, J. L., Kubik, C. J., Pofahl, W. E., & Hickner, R. C. (2007). Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta physiologica191(2), 139-146.
  9. Gavin, T. P., Robinson, C. B., Yeager, R. C., England, J. A., Nifong, L. W., & Hickner, R. C. (2004). Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. Journal of Applied Physiology96(1), 19-24.
  10. Goto, F. K. K. J., Goto, K., Weindel, K., & Folkman, J. (1993). Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Laboratory investigation; a journal of technical methods and pathology69(5), 508-517.
  11. Gu, J. W., Shparago, M., Tan, W., & Bailey, A. P. (2006). Tissue endostatin correlates inversely with capillary network in rat heart and skeletal muscles.Angiogenesis9(2), 93-99.
  12. Gustafsson, T., & Kraus, W. E. (2001). Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Front Biosci6, D75-D89.
  13. Hellsten, Y., Rufener, N., Nielsen, J. J., Høier, B., Krustrup, P., & Bangsbo, J. (2008). Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle.American Journal of Physiology-Regulatory, Integrative and Comparative Physiology294(3), R975-R982.
  14. Hepple, R. T., Hogan, M. C., Stary, C., Bebout, D. E., Mathieu-Costello, O., & Wagner, P. D. (2000). Structural basis of muscle O2 diffusing capacity: evidence from muscle function in situ. Journal of Applied Physiology88(2), 560-566.
  15. Hiscock, N., Fischer, C. P., Pilegaard, H., & Pedersen, B. K. (2003). Vascular endothelial growth factor mRNA expression and arteriovenous balance in response to prolonged, submaximal exercise in humans. American Journal of Physiology-Heart and Circulatory Physiology285(4), H1759-H1763
  16. Höffner, L., Nielsen, J. J., Langberg, H., & Hellsten, Y. (2003). Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in human skeletal muscle interstitium. The Journal of physiology550(1), 217-225.
  17. Islami, D., Bischof, P., & Chardonnens, D. (2003). Modulation of placental vascular endothelial growth factor by leptin and hCG. Molecular human reproduction9(7), 395-398.
  18. Jalali, S., del Pozo, M. A., Chen, K. D., Miao, H., Li, Y. S., Schwartz, M. A. Chien, S. (2001). Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands.Proceedings of the National Academy of Sciences98(3), 1042-1046.
  19. Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle.The Journal of physiology557(2), 571-582.
  20. Keong, C. C., Singh, H. J., & Singh, R. (2006). Effects of palm vitamin e supplementation on exercise-induced oxidative stress and endurance performance in the heat. Journal of sports science & medicine5(4), 629-639
  21. Kroon, M. E., Koolwijk, P., van der Vecht, B., & van Hinsbergh, V. W. (2001). Hypoxia in combination with FGF-2 induces tube formation by human microvascular endothelial cells in a fibrin matrix: involvement of at least two signal transduction pathways. Journal of cell science114(4), 825-833.
  22. Laufs, U., Werner, N., Link, A., Endres, M., Wassmann, S., Jürgens, K. Nickenig, G. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation109(2), 220-226.
  23. Leick, L., Hellsten, Y., Fentz, J., Lyngby, S. S., Wojtaszewski, J. F., Hidalgo, J., & Pilegaard, H. (2009). PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice. American Journal of Physiology-Endocrinology and Metabolism297(1), E92-E103.
  24. Lundby, C., Calbet, J. A., & Robach, P. (2009). The response of human skeletal muscle tissue to hypoxia. Cellular and molecular life sciences66(22), 3615-3623.
  25. Lundby, C., Pilegaard, H., Andersen, J. L., van Hall, G., Sander, M., & Calbet, J. A. (2004). Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. Journal of experimental biology207(22), 3865-3871
  26. Lundby, C., & Steensberg, A. (2004). Interleukin-6 response to exercise during acute and chronic hypoxia. European journal of applied physiology91(1), 88-93
  27. Margaritis, I., Palazzetti, S., Rousseau, A. S., Richard, M. Favier, A. (2003). Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. Journal of the American College of Nutrition,22(2), 147-156.
  28. McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: nutrition, energy, and human performance. Lippincott Williams & Wilkins.
  29. McCawley, L. J., & Matrisian, L. M. (2001). Matrix metalloproteinases: they're not just for matrix anymore!. Current opinion in cell biology13(5), 534-540.
  30. Morton, J. P., & Cable, N. T. (2005). The effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics48(11-14), 1535-1546
  31. Mounier, R., Pialoux, V., Schmitt, L., Richalet, J. P., Robach, P., Coudert, J. Fellmann, N. (2009). Effects of acute hypoxia tests on blood markers in high-level endurance athletes. European journal of applied physiology106(5), 713-720.
  32. Nemet, D., Hong, S., Mills, P. J., Ziegler, M. G., Hill, M., & Cooper, D. M. (2002). Systemic vs. local cytokine and leukocyte responses to unilateral wrist flexion exercise. Journal of Applied Physiology93(2), 546-554
  33. Ostrowski, K., Schjerling, P., & Pedersen, B. K. (2000). Physical activity and plasma interleukin-6 in humans–effect of intensity of exercise. European journal of applied physiology83(6), 512-515
  34. Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Muscle‐derived interleukin‐6: possible biological effects. The Journal of physiology536(2), 329-337.
  35. Pedersen, B. K., & Toft, A. D. (2000). Effects of exercise on lymphocytes and cytokines. British Journal of Sports Medicine34(4), 246-251.
  36. Plomgaard, P., Penkowa, M., & Pedersen, B. K. (2005). Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exerc Immunol Rev11(4), 53-63.
  37. Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews88(4), 1243-1276.
  38. Prior, B. M., Yang, H. T., & Terjung, R. L. (2004). What makes vessels grow with exercise training?. Journal of Applied Physiology97(3), 1119-1128.
  39. Rehn, M., Veikkola, T., Kukk-Valdre, E., Nakamura, H., Ilmonen, M., Lombardo, C. R. Vuori, K. (2001). Interaction of endostatin with integrins implicated in angiogenesis. Proceedings of the National Academy of Sciences,98(3), 1024-1029.
  40. Richardson, R. S., Wagner, H., Mudaliar, S. R. D., Henry, R., Noyszewski, E. A., & Wagner, P. D. (1999). Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. American Journal of Physiology-Heart and Circulatory Physiology277(6), H2247-H2252.
  41. Rullman, E., Rundqvist, H., Wågsäter, D., Fischer, H., Eriksson, P., Sundberg, C. J. Gustafsson, T. (2007). A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. Journal of applied physiology,102(6), 2346-2351.
  42. Schulze‐Tanzil, G., Al‐Sadi, O., Wiegand, E., Ertel, W., Busch, C., Kohl, B., & Pufe, T. (2011). The role of pro‐inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scandinavian journal of medicine & science in sports21(3), 337-351.
  43. Shweiki, D., Itin, A., Soffer, D., & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.Nature359(6398), 843-845.
  44. Silva, R., D'Amico, G., Hodivala-Dilke, K. M., & Reynolds, L. E. (2008). Integrins The keys to unlocking angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology28(10), 1703-1713.
  45. Suhr, F., Brixius, K., de Marées, M., Bölck, B., Kleinöder, H., Achtzehn, S. Mester, J. (2007). Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. Journal of Applied Physiology103(2), 474-483.
  46. Suto, K., Yamazaki, Y., Morita, T. Mizuno, H. (2005). Crystal Structures of Novel Vascular Endothelial Growth Factors (VEGF) from Snake Venoms INSIGHT INTO SELECTIVE VEGF BINDING TO KINASE INSERT DOMAIN-CONTAINING RECEPTOR BUT NOT TO fms-LIKE TYROSINE KINASE-1.Journal of Biological Chemistry280(3), 2126-2131.
  47. Takahashi, K., Saishin, Y., Saishin, Y., Silva, R. L., Oshima, Y., Oshima, S. Campochiaro, P. A. (2003). Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. The FASEB journal17(8), 896-898.
  48. Tang, K., Breen, E. C. Gerber, H. P., Ferrara, N. Wagner, P. D. (2004). Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiological genomics18(1), 63-69.
  49. Thorell, D., Borjesson, M., Larsson, P., Ulfhammer, E., Karlsson, L. DuttaRoy, S. (2009). Strenuous exercise increases late outgrowth endothelial cells in healthy subjects. European journal of applied physiology107(4), 481-488.
  50. Van Craenenbroecka, E. M., Vrintsa, C. J., Hainea, S. E., Vermeulenc, K., Goovaertsa, I., Van Tendeloob, V. F. Emeline Van Craenenbroeck, M. D. (2008). A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. J AppiPhysiol2008104, 1006-13.
  51. Van Wagoner, N. J. Benveniste, E. N. (1999). Interleukin-6 expression and regulation in astrocytes. Journal of neuroimmunology100(1), 124-139.
  52. Vu, T. H., & Werb, Z. (2000). Matrix metalloproteinases: effectors of development and normal physiology. Genes & development14(17), 2123-2133.
  53. Walter, R., Maggiorini, M., Scherrer, U., Contesse, J. Reinhart, W. H. (2001). Effects of high-altitude exposure on vascular endothelial growth factor levels in man. European journal of applied physiology85(1-2), 113-117.
  54. Wood, R., Sanderson, B., Askew, C., Walker, P., Green, S. Stewart, I. (2006). Effect of training on the response of plasma vascular endothelial growth factor to exercise in patients with peripheral arterial disease. Clinical Science,111, 401-409.
  55. Wu, G., Rana, J. S., Wykrzykowska, J. Du, Kang, P. Laham, R. J. (2009). Exercise-induced expression of VEGF and salvation of myocardium in the early stage of myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology296(2), H389-H395.
  56. Wu, L. W., Mayo, L. D., Dunbar, J. Kessler, K. Baerwald, M. Jaffe, E. Donner, D. B. (2000). Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. Journal of Biological Chemistry,275(7), 5096-5103.
  57. Zachary, I. Gliki, G. (2001). Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family.Cardiovascular research49(3), 568-581.
  58. Zhao, W, Zhao T, Chen, Y, Ahokas, R. Sun, Y. (2009). Reactive oxygen species promote angiogenesis in the infarcted rat heart. International journal of experimental pathology90(6), 621-629.