نوع مقاله : مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I

نویسندگان

1 استادیار گروه تربیت ‌بدنی و علوم ورزشی دانشگاه زنجان

2 دانشیار دانشکدۀ تربیت ‌بدنی و علوم ورزشی دانشگاه خوارزمی

3 دانشیار گروه تربیت ‌بدنی و علوم ورزشی دانشگاه تربیت مدرس

چکیده

هدف از پژوهش حاضر تعیین اثر هشت هفته تمرین استقامتی بر مقدار پروتئینα-1A  کانال کلسیمی پیش‌سیناپسی نوع P/Q در عضلات FHL (خم­کنندة دراز انگشت شست) و نعلی موش­های صحرایی بود. شانزده سر موش صحرایی نر ویستار به­صورت تصادفی به دو گروه شاهد و تمرین تقسیم شدند. هشت هفته تمرین در آغاز شامل هر روز 30 دقیقه با سرعت 10 متر در دقیقه بود و این میزان به­صورت فزاینده به هر روز 60 دقیقه با سرعت 30 متر در دقیقه رسید. پروتئینα-1A  با روش وسترن­بلاتینگ (حجم باند به مقدار پروتئین) اندازه­گیری شد و نتایج نشان داد که میزان این کانال (پروتئین) در گروه استقامتی تنها در عضلة نعلی به­طور غیرمعنادار (177/0P =) افزایش یافته است. افزایش 20 درصدی پروتئینα-1A  بر اثر تمرین استقامتی در عضلة نعلی در مقایسه با عدم تغییر آن در عضلة خم­کنندة دراز انگشت شست می­تواند بیانگر پاسخ­پذیری کانال­های کلسیمی پیش­سیناپسی نوع P/Q در این عضله بر اثر تمرینات استقامتی به‌منظور افزایش رهایش استیل­کولین از پایانة عصبی و همچنین ویژگی سازگاری به تمرین در عضله­ای که بیشتر استفاده شده است، باشد که در سازگاری­های پیوندگاه عصبی عضلانی به آن اشاره شده است. در نتیجه، می­توان گفت که احتمالاً تمرین استقامتی عامل مهمی در افزایش پروتئین α-1A  است.

کلیدواژه‌ها

عنوان مقاله [English]

The Effects of 8 Weeks of Endurance Training on α -1A Protein of pre-Synaptic P-Q-type Calcium Channels in Fast and slow Muscles of Rats

نویسندگان [English]

  • Ali Gorzi 1
  • Hamid Rajabi 2
  • Reza Ghara khanlou 3

1 Assistant Professor, Department of Physical Education and Sport Sciences, University of Zanjan, Zanjan, Iran

2 Associate Professor, Faculty of Physical Education and Sport Sciences, University of Kharazmi, Tehran, Iran

3 Associate Professor, Department of Physical Education and Sport Sciences, Tarbiat Modares University, Tehran, Iran

چکیده [English]

The purpose of this study was to investigate the effects of 8 weeks of endurance training (ET) on ? -1A protein of pre-synaptic P-Q-type Calcium Channels in FHL and Soleus muscles of rats. 16 male wistar rats provided from razi institute, were randomly divided to 2 groups (Control-Sham; n=8 and Endurance Training; n= 8). Training group performed 8 weeks (5 session/week) of endurance training on animal treadmill with 10 m/min for 30 min in the first week which was gradually increased to 30 m/min for 60 min(equal to 70-80% of Vo2max) in the last week. 48 h after last session of training, FHL and Sol muscles were removed under sterilized situation by cutting on posterio-lateral side of hind limb. Measuring ?-1A protein with Western Blotting and independent t test showed that the amount of this protein insignificantly (P=0.177) increased in soleus muscles of ET group (soleus: 14.82±87.44 vs. Control: 20.20±72.57 (equal to 0/20 percent) and FHL: 7.26±70.83 vs. Control: 6.28±70.01- p=0/839). This insignificant increase in ? -1A protein in soleus muscles, may indicate to the responsiveness of pre-synaptic P-Q-type calcium channels of muscles following endurance training for improving Ach release from pre-synaptic terminal, noted in NMJ adaptations. In conclusion, it might be expressed that endurance training could be a main factor for the function of ?-1A protein in muscles and this case should be studied in future investigations with higher volume and intensities.

کلیدواژه‌ها [English]

  • FHL and Soleus Muscle
  • α -1A protein
  • Endurance training
  • Pre-synaptic P-Q-type Calcium Channels
  1. قراخانلو رضا، پرنو عبدالحسین، هدایتی مهدی، مهدیان رضا، رجبی سمیه (1388). اثر تمرینات استقامتی و مقاومتی بر میزان CGRP در عضلات کند و تند، مجلة غدد درون‌ریز و متابولیسم ایران، دورۀ یازدهم شمارۀ 3، صص 313-307.
  2. مکینتاش، برایان آر. گاردینر، فلیپ اف. و مک­کومز، آلان جی (2006). ترجمه: 1390. قراخانلو رضا، آزاد احمد و گُرزی علی. ساختار و عملکرد عضلة اسکلتی. انتشارات سمت، صص 317 و 341-340.
    1. Álvarez YD, Belingheri AV, Perez Bay AE, Javis SE, Tedford HW, Zamponi G, Marengo FD. (2013). The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site. PLoS One, 8(1). 1-14
    2. Arrowsmith JE. (2007). The neuromuscular junction. Basic science/ Surgery, 25:3.105-111.
    3. Catterall WA. (2000). Structure and regulation of voltage-gated calcium channels. Annu. Rev. Cell Dev. Biol, 16: 521–555.
    4. Cullinen K, Caldwell M. (1998). Weight training increases fat-free mass and strength in untrained young women. J Am Diet Assoc, 98(4):414-8.
    5. Dodge FA Jr. & Rahmimoff, R. (1967). Co-operative action a calcium ions in transmitter release at the neuromuscular junction. Journal of Physiology, 193, 419-32.
    6. Fletcher A. (2011). Neuromuscular function and transmission. Physiology/ Anaesthesia and Intensive Care Medicine, 12:6.245-248.
    7. Folland JP, Williams AG. (2007). The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med, 37(2):145-68.
    8. Garci´a AG, Garci´a De-Diego AM, Gandi´a L, Borges R, and Garci´a-Sancho J. (2006). Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev, 86:1093-1131.
    9. Gaspersic R, Koritnik B, Crne-Finderle N, Sketelj J. (1999). Acetylcholinesterase in the neuromuscular junction. chemico-Biological interactions, 119-120: 301–308.
    10. Gazulla J and Tintoré M. (2007). The P/Q-type voltage-dependent calcium channel: a therapeutic target in spinocerebellar ataxia type 6. Acta Neurol Scand, 115: 356–363.
    11. Grimm C, Nadine IH, Draguhn A and Bruehl C. (2008). Compensatory increase in P/Q-calcium current-mediated synaptic transmission following chronic block of N-type channels. Neuroscience Letters,  442.1: 44-49.
    12. Joo YIa, Sone T. (2003). Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone, 33:485–493.
    13. Michiaki Y, Akiyoshi N. (2002). Calcium channels - basic aspects of their structure, function and gene encoding; anesthetic action on the channels - a review. CAN J ANESTH,  49: 2 / p 151–164.
    14. Pellkofer HL, Armbruster L, Krumbholz M, Titulaer MJ, Verschuuren JJ, Schumm F and Voltz R. (2008). Lambert–Eaton myasthenic syndrome differential reactivity of tumor versus non-tumor patients to subunits of the voltage-gated calcium channel. Journal of Neuroimmunology,  204.1-2: 136-139.
    15. Pumplin DW, Reese TS, & Llinas R. (1981). Are the presynaptic membrane particles the calcium channels? Proceedings of the National Academy of Sciences of the United States of America, 78, 7210-7213.
    16. Snutch TP, Peloquin J, Mathews E and McRoy JE. (2004). Molecular properties of voltage-gated calcium channels. Eurekah.com and Kluwer Academic / Plenum publisher.E version.
    17. Sukho L and Roger PF. (2003). Resistance training induces muscle-specific changes in muscle mass and function in rat. Journal of Exercise Physiology, 6: 2. P: 80-87.
    18. Tian X, Zhou Y, Gao L, He G, Jiang W, Li W, Takahashi E. (2013). Analysis of ischemic neuronal injury in Cav2.1 channel α1 subunit mutant mice. Biochem Biophys Res Commun, 434(1), 60-64.
    19. Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M and Llinas R. (1992). P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl. Acad. Sci. U.S.A, 89, p. 3330–3333.
    20. Urbano FJ, Pagani MR and Uchitel OD. (2008). Calcium channels, neuromuscular synaptic transmission and neurological diseases. Journal of Neuroimmunology, 201-202: 136-144.
    21. Urbano FJ, Rosato-Siri MD, & Uchitel OD. (2002). Calcium channels involved in neurotransmitter release at adult, neonatal and P/Q-type deficient neuromuscular junctions. Molecular Membrane Biology, 19, 293-300.