نوع مقاله : مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I

نویسندگان

1 استادیار فیزیولوژی ورزش، دانشکدۀ علوم ورزشی، دانشگاه الزهرا، تهران، ایران

2 . استاد فیزیولوژی ورزش، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران

3 .دانشیار مرکز تحقیقات سلولی و ملکولی و گروه هماتولوژی، دانشکدۀ پیراپزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

4 دانشیار پژوهشی غدد درون ریز و متابولیسم، مرکز تحقیقات دیابت، پژوهشکدۀ علوم بالینی غدد و متابولیسم، دانشگاه علوم پزشکی تهران، تهران، ایران

5 پزشک، محقق مرکز تحقیقات غدد و متابولیسم، پژوهشکدۀ علوم بالینی غدد و متابولیسم، دانشگاه علوم پزشکی تهران، تهران، ایران

چکیده

هدف از مطالعۀ حاضر مقایسۀ یک دوره تمرین تناوبی شدید با استقامتی تداومی بر بیان ژن mir-1 و IGF 1 در کاردیومیوسیت رت‌های دیابتی بود. 21 سر رت نر نژاد ویستار، پس از القای دیابت به‌صورت تصادفی به سه گروه هفت‌تایی (کنترل، استقامتی تداومی و تناوبی شدید) تقسیم شدند، برنامۀ تمرینی 5 روز در هفته به مدت 8 هفته بود، هر جلسۀ تمرین استقامتی 30 دقیقه دویدن با شدت 60 درصد VO2max و هر جلسۀ گروه تناوبی چهار تناوب سه‌دقیقه‌ای با شدت 90 درصد VO2max و یک دقیقه ریکاوری با شدت 30 درصد VO2max بین هر تناوب بود. بیان ژن IGF-1 و mir-1 از بافت بطن چپ، به‌وسیلۀ روش qRT PCR  سنجیده شد. نتایج نشان داد هر دو نوع تمرین سبب کاهش معنادار بیان ژن mir-1 نسبت به گروه کنترل شده است ، اما این کاهش در گروه تناوبی شدید نسبت به گروه استقامتی بیشتر بود (05/0P≥)؛ همچنین بیان ژن IGF-1 در هر دو گروه تمرینی نسبت به گروه کنترل افزایش معناداری یافته بود که این افزایش در گروه تناوبی شدید نسبت به گروه استقامتی بیشتر بود (05/0P≥). به‌نظر می‌رسد تمرین تناوبی شدید با سرکوب mir-1 می‌تواند مداخلۀ مؤثری برای کاهش عوارض کاردیومیوپاتی دیابتی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of High Intensity Interval Training and Continuous Endurance Training on Gene Expression of mir-1 and IGF-1 in Cardiomyocyte of Diabetic Male Rats

نویسندگان [English]

  • Maryam Delfan 1
  • Mohammad Reza Kordi 2
  • Ali Asghar Ravasi 2
  • Majid Safa 3
  • Ensieh Nasli Esfahani 4
  • Kamelia Rambod 5

1 Assistant Professor of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran

2 Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran

3 Associate Professor of Cellular and Molecular Research Center, Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran

4 Research Associate Professor of Endocrinology and Metabolism, Diabetes Research Center, Endocrinology and Metabolism Research Center, University of Medical Sciences, Tehran, Iran

5 Researcher of Endocrinology and Metabolism, Endocrinology and Metabolism Research Center, University of Medical Sciences, Tehran, Iran

چکیده [English]

This study aimed to compare high intensity interval training and continuous endurance training on the gene expression of mir-1 and IGF-1 in cardiomyocytes of diabetic rats. After induction of diabetes, 21 male Wistar rats were randomly divided into three groups (each group 7 subjects): control, continuous endurance training, high intensity interval training). The training program included 5 days a week for 8 weeks. Each endurance session consisted of 30 minutes of running with the intensity of 60% VO2max. Each interval session consisted of 4 intervals, each interval 3 minutes, with the intensity of 90% VO2max and 1 minute of recovery with the intensity of 30% VO2max between each two intervals. Gene expression of IGF-1 and mir-1 of left ventricle tissue was assessed by qRT PCR. The results showed that both types of training significantly reduced the gene expression of mir-1 compared to the control group, but this decline was severer in the high intensity interval group than the endurance group (P≥0.05). Also, the gene expression of IGF-1 significantly increased in both training groups compared to the control group but this increase was severer in high intensity interval group than the endurance group (P≥0.05). It seems that high intensity interval training can be an effective intervention to reduce the complications of diabetic cardiomyopathy by repression of mir-1.

کلیدواژه‌ها [English]

  • Cardiomyopathy
  • IGF-1
  • microRNA-1
  • training
1.Murarka S, Movahed MR. Diabetic cardiomyopathy. Journal of cardiac failure. 2010;16(12):971-9.
2. Bugger H, Abel ED. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clinical science (London, England : 1979). 2008. 114(3); 195-210.
3. Skyler JS. Diabetic complications: the importance of glucose control. Endocrinology and Metabolism Clinics. 1996;25(2):243-54.
 4. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular research. 2008;79(2):341-51.
5. Yu X-Y, Song Y-H, Geng Y-J, Lin Q-X, Shan Z-X, Lin S-G, et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochemical and biophysical research communications. 2008;376(3):548-52.
6.Tang X, Tang G, Özcan S. Role of microRNAs in diabetes. Biochimica et Biophysica Acta (BBA). Gene Regulatory Mechanisms. 2008;1779(11):697-701.
7. Ambros V. The functions of animal microRNAs. Nature.2004. (7006)5;350-431..
8. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. The Journal of clinical investigation. 2007;117(9):2369-76.
9.Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. The international journal of biochemistry & cell biology. 2010;42(8):1252-5.
10. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(23):8721-6.
11. Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120(23):2377-85.
12. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of cell science. 2007;120(Pt 17):3045-52.
13. Li Y, Wu H, Khardori R, Song YH, Lu YW, Geng YJ. Insulin-like growth factor-1 receptor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem Biophys Res Commun. 2009;384(2):259-64.
14. Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, et al. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Experimental cell research. 2010;316(17):2903-9.
15. Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Annals of internal medicine. 2000;132(8):605-11.
16. Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S. Exercise for the management of type 2 diabetes: a review of the evidence. Acta diabetologica. 2010;47(1):15-22.
17. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122(12):1221-38.
18. Harding AH, Williams DEM, Hennings SHJ, Mitchell J, Wareham NJ. Is the association between dietary fat intake and insulin resistance modified by physical activity? Metabolism. 2001;50(10):1186-92.
19. Paulson DJ, Kopp SJ, Peace DG, Tow JP. Improved postischemic recovery of cardiac pump function in exercised trained diabetic rats. Journal of applied physiology (Bethesda, Md : 1985). 1988;65(1):187-93.
20. Reed JC. Cytochrome c: can't live with it--can't live without it. Cell. 1997;91(5):559-62.
21. Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. American journal of physiology Regulatory, integrative and comparative physiology. 2011;300(6):R1303-10.
22. Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes care. 2006;29(11):2518-27.
23. Leandro CG, Levada AC, Hirabara SM, Manhães-de-Castro R, De-Castro CB, Curi R, et al. A program of moderate physical training for Wistar rats based on maximal oxygen consumption. Journal of strength and conditioning research. 2007;21(3):751-6.
24. Laurie J. Goodyear P, Barbara B. Kahn M. Exercise, Glucose Transport, and Insulin Sensitivity. Annual Review of Medicine. 1998;49(1):235-61.
25. Frøsig C, Richter EA. Improved Insulin Sensitivity After Exercise: Focus on Insulin Signaling. Obesity. 2009;17(S3):S15-S20.
26. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071-81.
27.Zanesco A, Antunes E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacology & therapeutics. 2007;114(3):307-17.
28. Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS letters. 2010;584(16):3592-600.
29. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature medicine. 2007;13(4):486-91.