Document Type : Research Paper I Open Access I Released under CC BY-NC 4.0 license

Authors

1 Department of Physical Education, Tarbiat Modares University, Tehran, Iran

2 Professor, Department of Physical Education, Tarbiat Modares University, Tehran, Iran

3 Associate Professor, Department of Physical Education, Tarbiat Modares University, Tehran, Iran

Abstract

Background and purpose: Soccer is a complicated team sport in which performance, depends on physiological capabilities. Determining and addressing influential genetic factors can help an effective selecting process and guiding talented athletes and personalizing their exercises. This study aims to assess the potential importance of polymorphism of ACTN3, MCT1, PPARGC1A, ACSL1 and PPARA genes in professional soccer players in Iranian Pro League.
Methodology: In this research, 30 professional players of a soccer team in Iranian Pro League were studied. The control group includes 100 non-athlete men whose genomic DNA were extracted from their saliva. Genotype detection using PCR-RFLP method was conducted to identifying polymorphism in ACTM3, PPARGC1A, genes. Frequency of these two polymorphisms among soccer players and control group was determined by statistical test Chi Squared (χ2).
Results: Our statistical analysis show a significant difference in XX genotypic frequency in ACTN3 gene polymorphism between soccer players and control group (P = 0.022). Whereas, RR genotypic frequency show no significance difference between soccer players and control group (P = 0.058). Also, it was found that GG genotypic frequency in PPARGC1A gene polymorphism is statistically significant (P = 0.023). (In all genotypes P > 0.05).
Conclusion: The results showed that the rs8192678 polymorphism of PPARGC1A gene, can probably be a genetic marker for detecting and discovering talented people in the Iranian populations. In addition, regarding to the literatures, polymorph of ACTN3, individually or in combination, can be considered as a marker gene in soccer.

Highlights

1. Tucker R, Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. British journal of sports medicine. 2012;46(8):555-61.
2. Bouchard C. Genomic predictors of trainability. Experimental physiology. 2012;97(3):347-52.
3. Georgiades E, Klissouras V, Baulch J, Wang G, Pitsiladis Y. Why nature prevails over nurture in the making of the elite athlete. BMC genomics. 2017;18(8):59-66.
4. De Moor MH, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Research and Human Genetics. 2007;10(6):812-20.
5. McAuley AB, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, et al. Genetic association research in football: A systematic review. European Journal of Sport Science. 2020:1-39.
6. Myburgh KH. What makes an endurance athlete world-class? Not simply a physiological conundrum. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2003;136(1):171-90.
7. Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity activity in Premier League soccer. International journal of sports medicine. 2009;30(03):205-12.
8. Reilly T, Williams AM. Introduction to science and soccer: Routledge; 2003.
9. Rampinini E, Impellizzeri FM, Castagna C, Abt G, Chamari K, Sassi A, et al. Factors influencing physiological responses to small-sided soccer games. Journal of sports sciences. 2007;25(6):659-66.
10. Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer. Sports medicine. 2005;35(6):501-36.
11. Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature communications. 2017;8(1):1-12.
12. Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. Journal of sports sciences. 2012;30(1):101-13.
13. Beggs AH, Byers T, Knoll J, Boyce F, Bruns G, Kunkel L. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. Journal of Biological Chemistry. 1992;267(13):9281-8.
14. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, et al. Differential expression of the actin-binding proteins, α-actinin-2 and-3, in different species: implications for the evolution of functional redundancy. Human molecular genetics. 2001;10(13):1335-46.
ژن ... 225 rs و 8192678 ACTN ژن 3 rs بررسی فراوانی پلیمورفیسمهای 1815739
15. Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Human molecular genetics. 2014;23(7):1879-93.
16. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nature genetics. 1999;21(4):353-4.
17. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. The American Journal of human genetics. 2003;73(3):627-31.
18. Moran CN, Yang N, Bailey ME, Tsiokanos A, Jamurtas A, MacArthur DG, et al. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics. 2007;15(1):88-93.
19. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. European journal of applied physiology. 2016;116(9):1595-625.
20. Jones N, Kiely J, Suraci B, Collins D, De Lorenzo D, Pickering C, et al. A genetic-based algorithm for personalized resistance training. Biology of sport. 2016;33(2):117.
21. Pimenta EM, Coelho DB, Cruz IR, Morandi RF, Veneroso CE, de Azambuja Pussieldi G, et al. The ACTN3 genotype in soccer players in response to acute eccentric training. European journal of applied physiology. 2012;112(4):1495-503.
22. Coelho DB, Pimenta EM, Rosse IC, de Castro BM, Becker LK, de Oliveira EC, et al. Evidence for a role of ACTN3 R577X polymorphism in football player’s career progression. International journal of sports medicine. 2018;39(14):1088-93.
23. Ferec A. Genetics for trainers: Decoding the sports Genes. Kindle Edition. 2014.
24. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism. 2005;1(6):361-70.
25. Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454(7203):463-9.
26. Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Advances in physiology education. 2006.
27. Cheng C-F, Ku H-C, Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. International journal of molecular sciences. 2018;19(11):3447.
28. Lucia A, Gómez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. Journal of applied physiology. 2005;99(1):344-8.
29. Santiago C, González-Freire M, Serratosa L, Morate FJ, Meyer T, Gómez-Gallego F, et al. ACTN3 genotype in professional soccer players. British journal of sports medicine. 2008;42(1):71-3.
30. MacArthur DG, North KN. A gene for speed? The evolution and function of α‐actinin‐3. Bioessays. 2004;26(7):786-95.
226 علوم زیستی ورزشی، دورة 13 ، شمارة 2، تابستان 1400
31. ACTN MD. A genetic influence on muscle function and athletic performance/DG Macarthur, KN North. Exerc Sport Sci Rev. 2007;35(1):30-4.
32. Little T, Williams A. Specificity of acceleration, maximum speed and agility in professional soccer players: Routledge London, UK:; 2003.
33. Gineviciene V, Jakaitiene A, Tubelis L, Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. European journal of sport science. 2014;14(sup1):S289-S95.
34. Fallah A, Fallah Mohammadi Z, Behmanesh M, Gharakhanlou R, Ali Naghizadeh M. Evaluation of the Frequency of polymorphism R577X in ACTN3 gene and I/D ACE gene in Iranian elite judo athletes. Journal of exercise Physiology. 2018;14(28):151-8.
35. Barros RM, Misuta MS, Menezes RP, Figueroa PJ, Moura FA, Cunha SA, et al. Analysis of the distances covered by first division Brazilian soccer players obtained with an automatic tracking method. Journal of sports science & medicine. 2007;6(2):233.
36. Coelho DB, Mortimer LÁ, Condessa LA, Morandi RF, Oliveira BM, Marins JCB, et al. Intensity of real competitive soccer matches and differences among player positions. Revista Brasileira de Cineantropometria & Desempenho Humano. 2011;13(5):341-7.
37. Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. Journal of sports sciences. 2005;23(6):593-9.
38. McAuley AB, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, et al. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. Journal of Sports Sciences. 2020:1-12.
39. Pimenta EM, Coelho DB, Veneroso CE, Coelho EJB, Cruz IR, Morandi RF, et al. Effect of ACTN3 gene on strength and endurance in soccer players. The Journal of Strength & Conditioning Research. 2013;27(12):3286-92.
40. Chen Y, Wang D, Yan P, Yan S, Chang Q, Cheng Z. Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biology of sport. 2019;36(4):301.

Keywords

Main Subjects

1. Tucker R, Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. British journal of sports medicine. 2012;46(8):555-61.
2. Bouchard C. Genomic predictors of trainability. Experimental physiology. 2012;97(3):347-52.
3. Georgiades E, Klissouras V, Baulch J, Wang G, Pitsiladis Y. Why nature prevails over nurture in the making of the elite athlete. BMC genomics. 2017;18(8):59-66.
4. De Moor MH, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Research and Human Genetics. 2007;10(6):812-20.
5. McAuley AB, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, et al. Genetic association research in football: A systematic review. European Journal of Sport Science. 2020:1-39.
6. Myburgh KH. What makes an endurance athlete world-class? Not simply a physiological conundrum. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2003;136(1):171-90.
7. Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity activity in Premier League soccer. International journal of sports medicine. 2009;30(03):205-12.
8. Reilly T, Williams AM. Introduction to science and soccer: Routledge; 2003.
9. Rampinini E, Impellizzeri FM, Castagna C, Abt G, Chamari K, Sassi A, et al. Factors influencing physiological responses to small-sided soccer games. Journal of sports sciences. 2007;25(6):659-66.
10. Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer. Sports medicine. 2005;35(6):501-36.
11. Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature communications. 2017;8(1):1-12.
12. Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. Journal of sports sciences. 2012;30(1):101-13.
13. Beggs AH, Byers T, Knoll J, Boyce F, Bruns G, Kunkel L. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. Journal of Biological Chemistry. 1992;267(13):9281-8.
14. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, et al. Differential expression of the actin-binding proteins, α-actinin-2 and-3, in different species: implications for the evolution of functional redundancy. Human molecular genetics. 2001;10(13):1335-46.
ژن ... 225 rs و 8192678 ACTN ژن 3 rs بررسی فراوانی پلیمورفیسمهای 1815739
15. Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Human molecular genetics. 2014;23(7):1879-93.
16. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nature genetics. 1999;21(4):353-4.
17. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. The American Journal of human genetics. 2003;73(3):627-31.
18. Moran CN, Yang N, Bailey ME, Tsiokanos A, Jamurtas A, MacArthur DG, et al. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics. 2007;15(1):88-93.
19. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. European journal of applied physiology. 2016;116(9):1595-625.
20. Jones N, Kiely J, Suraci B, Collins D, De Lorenzo D, Pickering C, et al. A genetic-based algorithm for personalized resistance training. Biology of sport. 2016;33(2):117.
21. Pimenta EM, Coelho DB, Cruz IR, Morandi RF, Veneroso CE, de Azambuja Pussieldi G, et al. The ACTN3 genotype in soccer players in response to acute eccentric training. European journal of applied physiology. 2012;112(4):1495-503.
22. Coelho DB, Pimenta EM, Rosse IC, de Castro BM, Becker LK, de Oliveira EC, et al. Evidence for a role of ACTN3 R577X polymorphism in football player’s career progression. International journal of sports medicine. 2018;39(14):1088-93.
23. Ferec A. Genetics for trainers: Decoding the sports Genes. Kindle Edition. 2014.
24. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism. 2005;1(6):361-70.
25. Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454(7203):463-9.
26. Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Advances in physiology education. 2006.
27. Cheng C-F, Ku H-C, Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. International journal of molecular sciences. 2018;19(11):3447.
28. Lucia A, Gómez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. Journal of applied physiology. 2005;99(1):344-8.
29. Santiago C, González-Freire M, Serratosa L, Morate FJ, Meyer T, Gómez-Gallego F, et al. ACTN3 genotype in professional soccer players. British journal of sports medicine. 2008;42(1):71-3.
30. MacArthur DG, North KN. A gene for speed? The evolution and function of α‐actinin‐3. Bioessays. 2004;26(7):786-95.
226 علوم زیستی ورزشی، دورة 13 ، شمارة 2، تابستان 1400
31. ACTN MD. A genetic influence on muscle function and athletic performance/DG Macarthur, KN North. Exerc Sport Sci Rev. 2007;35(1):30-4.
32. Little T, Williams A. Specificity of acceleration, maximum speed and agility in professional soccer players: Routledge London, UK:; 2003.
33. Gineviciene V, Jakaitiene A, Tubelis L, Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. European journal of sport science. 2014;14(sup1):S289-S95.
34. Fallah A, Fallah Mohammadi Z, Behmanesh M, Gharakhanlou R, Ali Naghizadeh M. Evaluation of the Frequency of polymorphism R577X in ACTN3 gene and I/D ACE gene in Iranian elite judo athletes. Journal of exercise Physiology. 2018;14(28):151-8.
35. Barros RM, Misuta MS, Menezes RP, Figueroa PJ, Moura FA, Cunha SA, et al. Analysis of the distances covered by first division Brazilian soccer players obtained with an automatic tracking method. Journal of sports science & medicine. 2007;6(2):233.
36. Coelho DB, Mortimer LÁ, Condessa LA, Morandi RF, Oliveira BM, Marins JCB, et al. Intensity of real competitive soccer matches and differences among player positions. Revista Brasileira de Cineantropometria & Desempenho Humano. 2011;13(5):341-7.
37. Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. Journal of sports sciences. 2005;23(6):593-9.
38. McAuley AB, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, et al. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. Journal of Sports Sciences. 2020:1-12.
39. Pimenta EM, Coelho DB, Veneroso CE, Coelho EJB, Cruz IR, Morandi RF, et al. Effect of ACTN3 gene on strength and endurance in soccer players. The Journal of Strength & Conditioning Research. 2013;27(12):3286-92.
40. Chen Y, Wang D, Yan P, Yan S, Chang Q, Cheng Z. Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biology of sport. 2019;36(4):301.