The effect of cold water immersion and repeated sprint activities on antioxidant factors in trained men

Document Type : Research Paper I Open Access I Released under CC BY 4.0 license

Authors

1 MA Student of Exercise Physiology, Faculty of physical education and sport sciences. University of Tehran, Tehran, Iran

2 Associated professor, Faculty of physical education and sport sciences. University of Tehran, Tehran, Iran

Abstract

The purpose of this study was to measure the changes in superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPX) and Hydrogen peroxide (H2O2), after repeated-sprint activity (RSA) and subsequent cold water immersion (CWI). Twenty trained athletes with maximal oxygen uptake (VO2max) 52.9±2.9 ml.kg-1.min-1, age 21.9±2.2 yrs, height 174.2±5.4 cm, and weight 68±4.4 kg were assigned to take part in this study. After performing repeated-sprint activity, 10 participants immersed in cold water (14°c) and 10 participants passively sat on a chair at room temperature. Blood sampling was performed before and after RSA, after CWI or passive rest and after 24 h. The results showed that antioxidant levels returned to baseline levels after 24 h, nevertheless; there was no significant difference between CWI and Control groups. In conclusion, although the levels of enzymatic antioxidants were significantly higher after RSA, CWI did not have any effect on returning to baseline levels after 24h.

Keywords


  1. Sutkowy, P., Woźniak, A., Boraczyński, T., Mila-Kierzenkowska, C., & Boraczyński, M. (2015). Postexercise impact of ice-cold water bath on the oxidant-antioxidant balance in healthy men. BioMed research international, 2015.
  2. Mäkinen, T. M. (2007). Human cold exposure, adaptation, and performance in high latitude environments. American Journal of Human Biology, 19(2), 155-164.
  3. Vieira, A., Siqueira, A., Ferreira-Junior, J., do Carmo, J., Durigan, J., Blazevich, A., & Bottaro, M. (2016). The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage. International journal of sports medicine, 37(12), 937-943.
  4. Bleakley, C. M., Bieuzen, F., Davison, G. W., & Costello, J. (2014). Whole-body cryotherapy: empirical evidence and theoretical perspectives. Open access journal of sports medicine, 5, 25-36.
  5. White, G. E., Rhind, S. G., & Wells, G. D. (2014). The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. European journal of applied physiology, 114(11), 2353-2367.
  6. Roberts, L. A., Nosaka, K., Coombes, J. S., & Peake, J. M. (2014). Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(8), R998-R1008.
  7. King, M., & Duffield, R. (2009). The effects of recovery interventions on consecutive days of intermittent sprint exercise. The Journal of Strength & Conditioning Research, 23(6), 1795-1802.
  8. Elabed, K., Masmoudi, L., Koubaa, A. and Hakim, A., (2014). Antioxidant in response to anaerobic or aerobic exercise alone or in combination in male judokas. Advances in Life Sciences and Health, 1(1), pp.24-33.
  9. Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological response to water immersion. Sports Medicine, 36(9), 747-765.

10. Bleakley, C. M., & Davison, G. W. (2009). What is the biochemical and physiological rationale for using Cold Water Immersion in Sports Recovery? A Systematic Review. British journal of sports medicine, bjsm. 2009.065565.

11. .Jakeman, J., Macrae, R., & Eston, R. (2009). A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics, 52(4), 456-460.

12. .Sellwood, K. L., Brukner, P., Williams, D., Nicol, A., & Hinman, R. (2007). Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. British journal of sports medicine, 41(6), 392-397.

13. Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability—Part I. Sports Medicine, 41(8), 673-694.

14. Robertson, V. J., Low, J., Ward, A., & Reed, A. (2006). Electrotherapy explained: principles and practice: Elsevier Health Sciences.

15. Wozniak, A., Mila-Kierzenkowska, C., Szpinda, M., Chwalbinska-Moneta, J., Augustynska, B., & Jurecka, A. (2013). Whole-body cryostimulation and oxidative stress in rowers: the preliminary results. Archives of Medical Science, 9(2), 303-308.

16. Heubert, R., Billat, V., Chassaing, P., Bocquet, V., Morton, R., Koralsztein, J., & Di Prampero, P. (2005). Effect of a previous sprint on the parameters of the work-time to exhaustion relationship in high intensity cycling. International journal of sports medicine, 26(07), 583-592.

17. Melhim, A. (2001). Aerobic and anaerobic power responses to the practice of taekwon-do. British journal of sports medicine, 35(4), 231-234.

18. Yeargin, S. W., Casa, D. J., McClung, J. M., Knight, J. C., Healey, J. C., Goss, P. J.,... Hipp, G. R. (2006). Body cooling between two bouts of exercise in the heat enhances subsequent performance. The Journal of Strength & Conditioning Research, 20(2), 383-389.

19. May, M. J., & Ghosh, S. (1998). Signal transduction through NF-κB. Immunology today, 19(2), 80-88.

20. Elabed, K., Masmoudi, L., Koubaa, A. and Hakim, A.,( 2014). Antioxidant in response to anaerobic or aerobic exercise alone or in combination in male judokas. Advances in Life Sciences and Health, 1(1), pp.24-33.

21. Groussard, C., Rannou-Bekono, F., Machefer, G., Chevanne, M., Vincent, S., Sergent, O., Cillard, J. and Gratas-Delamarche, A., (2003). Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. European journal of applied physiology, 89(1), pp.14-20.

22. Kanter, M. (1998). Free radicals, exercise and antioxidant supplementation. Proceedings of the Nutrition Society, 57(01), 9-13.

23. Fisher, G., Schwartz, D. D., Quindry, J., Barberio, M. D., Foster, E. B., Jones, K. W., & Pascoe, D. D. (2011). Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of Applied Physiology, 110(3), 730-737.

24. Tauler, P., Aguiló, A., Gimeno, I., Guix, P., Tur, J. A., & Pons, A. (2004). Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. The Journal of nutritional biochemistry, 15(8), 479-484.

25. Tauler, P., Sureda, A., Cases, N., Aguiló, A., Rodríguez-Marroyo, J. A., Villa, G.,... Pons, A. (2006). Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. The Journal of nutritional biochemistry, 17(10), 665-671.

26. Margonis, K., Fatouros, I. G., Jamurtas, A. Z., Nikolaidis, M. G., Douroudos, I., Chatzinikolaou, A.,... Taxildaris, K. (2007). Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radical Biology and Medicine, 43(6), 901-910.

27. Ohtsuka, Y., Yabunaka, N., Fujisawa, H., Watanabe, I., & Agishi, Y. (1994). Effect of thermal stress on glutathione metabolism in human erythrocytes. European journal of applied physiology and occupational physiology, 68(1), 87-91.

28. Lubkowska, A., Dołęgowska, B., & Szyguła, Z. (2012). Whole-body cryostimulation-potential beneficial treatment for improving antioxidant capacity in healthy men-significance of the number of sessions. PloS one, 7(10), e46352.

29. Williams, C., & Ratel, S. (2009). Human muscle fatigue: Routledge.

30. Knicker, A. J., Renshaw, I., Oldham, A. R., & Cairns, S. P. (2011). Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Medicine, 41(4), 307-328.

31. Lubkowska, A., Dołęgowska, B. and Szyguła, Z., (2012). Whole-body cryostimulation-potential beneficial treatment for improving antioxidant capacity in healthy men-significance of the number of sessions. Plos one, 7(10), p.e46352.

  1. 32.  Enoka, R. M. (1995). Mechanisms of muscle fatigue: central factors and task dependency. Journal of Electromyography and Kinesiology, 5(3), 141-149.

33. Rujito, L., Mulatsih, S., & Sofro, A. S. M. (2015). Status of Superoxide dismutase in transfusion dependent thalassaemia. North American journal of medical sciences, 7(5), 194

34. Ogura, Y., & Yamazaki, I. (1983). Steady-state kinetics of the catalase reaction in the presence of cyanide. Journal of biochemistry, 94(2), 403-408.

35. Gaetani, G. F., Ferraris, A., Rolfo, M., Mangerini, R., Arena, S., & Kirkman, H. (1996). Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 87(4), 1595-1599.

36. Paweł Sutkowy, Alina Woźniak, Tomasz Boraczyński, Celestyna Mila-Kierzenkowska, and Michał Boraczyński, “Postexercise Impact of Ice-Cold Water Bath on the Oxidant-Antioxidant Balance in Healthy Men,” BioMed Research International, vol.( 2015), Article ID 706141, 8 pages, 2015. doi:10.1155/2015/706141

37. Ohtsuka, Y., Yabunaka, N., Fujisawa, H., Watanabe, I. and Agishi, Y., (1994). Effect of thermal stress on glutathione metabolism in human erythrocytes. European journal of applied physiology and occupational physiology, 68(1), pp.87-91.

 

Volume 12, Issue 1
June 2020
Pages 17-30
  • Receive Date: 04 February 2017
  • Revise Date: 15 June 2020
  • Accept Date: 08 November 2017
  • First Publish Date: 21 May 2020