Document Type : Research Paper I Open Access I Released under CC BY-NC 4.0 license


1 .Assistant Professor, Faculty of Sport Sciences, Allameh Tabataba'i University, Core Research of health physiology and physical activity, Tehran, Iran

2 .Associate Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Beheshti University, Tehran, Iran

3 MSc of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Beheshti University, Tehran, Iran


The aim of the present study was to compare the effect of upper and lower body interval exercise on fat metabolism in obese individuals. 12 obese women (body mass index 31.1±5.5 kg/m2, age 32.9±7.08 years) voluntarily participated in the study and performed a session of interval exercise on a cycle ergometer and another session on arm cranking ergometer with one-week interval, 2 min. of activity at 85% of VO2max and 4 min. of active recovery at 45% of VO2max for 30 min. Two blood samples were collected before and immediately after the exercise. To calculate fat oxidation, oxygen consumption and expired CO2 were measured. Glycerol concentration increased significantly (P<0.05) following the interval exercise although the no significant differences were observed between upper and lower body interval exercise (P>0.05). Non-esterified fatty acid (NEFA) decreased following the upper body interval exercise, while, it increased following lower body interval exercise (P<0.05). Fat oxidation for total activities during lower body exercise was significantly (P<0.05) higher than upper body exercise, but, there was no significant difference in fat oxidation for sets and their total between the two sessions of exercise (P>0.05). Based on the findings of the present study, lipolysis increases following interval exercise in obese women and lower body interval exercise is more effective when burning fat than upper body interval exercise. Therefore, it is suggested that individuals should concentrate on lower body exercises to increase fat oxidation.

1.ابراهیم، خسرور؛ باسامی، مینو؛ کلاهدوزی، سرکوت؛ کریم‌نیا صاحب، وفا (2012). «تأثیر فعالیت مقاومتی دایره‌ای بر سوخت‌وساز چربی و کربوهیدرات طی فعالیت استقامتی در مردان با اضافه‌وزن»، مجلۀ غدد درون‌ریز و سوخت‌وساز ایران، دورۀ 14، ش 3، ص 266-257.
2.درفشی، بهروز؛ حاجی‌زاده، بهزاد؛ عباسی، اصغر (2009). «پاسخ‌های قلبی–عروقی و متابولیکی و ارتباط آنها با زمان خستگی در ورزش فزایندة دست و ورزش فزایندة پا در کاراته‌کاران حرفه‌ای جوان»، نشریۀ علوم زیستی ورزشی،دورۀ 1، ش 3، ص 75-57.
3.روحانی، هادی؛ صفری موسوی، سید صالح؛ غلامیان، سمیرا؛ فرزانه، اسماعیل (1394). «مقایسۀ حداکثر اکسیداسیون چربی و بین زنان تمرین‌کرده و تمرین‌نکرده»، فیزیولوژی ورزش، ش 28، ص 44-31.
4.Ahlborg, Gunter; Jensen‐Urstad, M (1991). "Metabolism in exercising arm vs. leg muscle". Clinical Physiology; Vol 11(No 5) pp; 459-468.
5.Ara, I; Larsen, S; Stallknecht, B; Guerra, B; Morales-Alamo, D; Andersen, J.L; Ponce-Gonzalez, J.G; Guadalupe-Grau, A; Galbo, H; Calbet, J.A.L; Helge, J.W (2011). "Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans." International journal of obesity; Vol 35 (No 1) pp; 99-108.
6.Brennan P, Boffetta P, Malekzadeh R. (2006). Obesity and hypertension in an Iranian cohort study; Iranian women experience higher rates of obesity and hypertension than American women. BMC Public Health. 6:158.
7.Bogdanis GC(1), Vangelakoudi A, Maridaki M. (2008). Peak fat oxidation rate during walking in sedentary overweight men and women. J Sports Sci Med. 7(4):525-31.
8. Boutcher, Stephen.H (2010). "High-intensity intermittent exercise and fat loss". Journal of obesity; Vol 2011 pp; 1-10.
9.Bracken, R.M; Linnane, D.M; Brooks, S (2009). "Plasma catecholamine and nephrine responses to brief intermittent maximal intensity exercise". Amino Acids; Vol 36 (No 2) pp; 209-217.
10.Christmass, Michael A; Dawson, Brian; and Arthur, Peter G (1999). "Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise". Europe an journal of applied physiology and occupational physiology; Vol 80 (No 5) pp; 436-447.
11.Draper, Nick; Hodgson, Christopher (2008). Adventure sport physiology. John Wiley & Sons.
12.Ehrman, Jonathan K; Gordon, Paul M; Visich, Paul S; Keteyian, Steven J (2013). Clinical exercise physiology. Human Kinetics.
13.Frayn, K.N (1983). "Calculation of substrate oxidation rates in vivo from gaseous exchange". Journal of Applied Physiology; Vol 55 (No 2) pp; 628-634.
14.Frayn, K.N (2010). "Fat as a fuel: emerging understanding of the adipose tissue–skeletal muscle axis". Actaphysiologica; Vol 199 (No 4) pp; 509-518.
15.Helge, Jørn Wulff (2010). "Arm and leg substrate utilization and muscle adaptation after prolonged low‐intensity training". Actaphysiologica; Vol 199 (No 4) pp; 519-528.
16.Helge, J.W; Damsgaard, R; Overgaard, K; Andersen, J.L; Donsmark, M; Dyrskog, S.E; Daugaard, J.R (2008). "Low‐intensity training dissociates metabolic from aerobic fitness". Scandinavian journal of medicine & science in sports; Vol 18 (No 1) pp; 86-94.
17.Hooker, Steven P; Wells, Christine L; Manore, Melinda M; Philip, Stephanie A; Martin, N.I.C.K (1990). "Differences in epinephrine and substrate responses between arm and leg exercise". Medicine and science in sports and exercise; Vol 22 (No 6), pp; 779-784.
18.Horowitz, Jeffrey F (2003). "Fatty acid mobilization from adipose tissue during exercise". Trends in Endocrinology & Metabolism; Vol 14(No 8) pp; 386-392.
19.Hughson, R.L (1984). "Alterations in the oxygen deficit‐oxygen debt relationships with beta‐adrenergic receptor blockade in man". The Journal of physiology; Vol 349 (No 1) pp; 375-387.
20.Kang, J; Chaloupka, Edward C; Mastrangelo, Alysia M; Angelucci, J.O.H.N (1999). Physiological responses to upper body exercise on an arm and a modified leg ergometer. Medicine and science in sports and exercise; Vol 31 (No 10), pp; 1453-1459.
21.Knechtle, B; Müller, G; Knecht, H (2004). "Optimal exercise intensities for fat metabolism in handbike cycling and cycling". Spinal cord; Vol 42(No 10) pp; 564-572.
22.Nguyen, Thang; Lau, David CW (2012). "The obesity epidemic and its impact on hypertension". Canadian Journal of Cardiology; Vol 28 (No 3) pp; 326-333.
23.Noland, Robert C (2015). Chapter Three-Exercise and Regulation of Lipid Metabolism. "Progress in molecular biology and translational science". 135 pp; 39-74.
24.Ogunbode, A.M; Ladipo, M.M.A; Ajayi, I.O; Fatiregun, A.A (2011). "Obesity: an emerging disease". Nigerian journal of clinical practice; Vol 14 (No 4) pp; 390-394.
25.Pendergast, David R (1989). "Cardiovascular, respiratory, and metabolic responses to upper body exercise". Medicine and science in sports and exercise; Vol 21(5 Suppl) pp; S121-5.
26.Phillips, Vicky (2009). Effects of Exercise Training Modalities on Fat Oxidation in Overweight and Obese Women (Doctoral dissertation, University of Otago).
27.Stefan Bircher and Beat Knechtle. (2004). Relationship between Fat Oxidation and Lactate Threshold in Athletes and Obese Women and Men. J Sports Sci Med. 3(3): 174–181.
28.Stisen AB, Stougaard O, Langfort J, Helge JW, Sahlin K, Madsen K.( 2006). Maximal fat oxidation rates in endurance trained and untrained women. 98(5):497-506
29.Trapp, E Gail; Chisholm, Donald J; Boutcher, Stephen H (2007). "Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology; Vol 293 (No 6) pp; R2370-R2375.
30.Whyte, Laura J; Ferguson, Carrie; Wilson, John; Scott, Robert A; Gill, Jason M (2013). Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism; Vol 62 (No 2) pp; 212-219.
31.World Health Organization. 2015. Obesity and overweight. Available at: