Document Type : Research Paper I Open Access I Released under CC BY-NC 4.0 license

Authors

1 Dept. of Sport Physiology, School of Physical Education And Sport Science, Shiraz University, Shiraz, Iran.

2 Department of Exercise Physiology, Tehran University, Tehran, Iran

Abstract

 
The aim of the present study was to investigate the effect of HIIT run on PGC-1α gene expression in fast & slow twitch muscles of healthy male  rats. For this purpose, 12 male Wistar rats divided into two groups: contorol (n=6) and exercise (n=6) , respectively. Intense interval training was consists of five days and a total of eight weeks,  that was formed the three frequencies ( 90 to 100% VO2max intensity for four minutes and two minutes at an intensity of 50 to 60% VO2max). 24 hours after the last training session, extensor digitorum longus muscle (EDL) and soleus was extracted and relevant variables and expression levels were measured by RT-PCR. Results showed a HIIT run a significant increase PGC-1α gene expression in both muscle groups were trained (p=0/004 and p=0/001). According to the findings, implement HIIT will be increases PGC-1α and oxidative capacity in SOL and EDL muscles.
 
 

Keywords

  1.  

    1. رابرگز، رابرت آ وکتائیان، جی استیون. اصول بنیادی فیزیولوژی ورزشی1 (2000)، ترجمۀ عباسعلی گائینی و ولی‌الله دبیدی روشن (1391)، چ هشتم، سمت.
    2. مک لارن، دان؛ مورتون،جیمز. بیوشیمی ورزشی و سوخت‌وساز فعالیت ورزشی (2012)، ترجمۀ عباسعلی گائینی (1391)، چ اول، سمت.
    3. 3.       همتی، محمد؛ کردی، محمدرضا؛ ثروت، چوپانی؛ چوبینه، سیروس؛ قراری، رضا (1392). تأثیر تمرینات با شدت بالا (HIIT) بر سطوح پلاسمایی آدیپونکتین، مقاومت و حساسیت انسولینی مردان جوان غیرفعال، مجلۀ علوم پزشکی دانشگاه علوم پزشکی زنجان، دورۀ 21، ش 84، ص 12 - 1.
    4. 4.       همتی، محمد؛ کردی، محمدرضا؛ چوبینه، سیروس؛ ثروت، چوپانی (1392). تأثیر تمرینات با شدت بالا (HIIT) بر عوامل فیبرینولیتیک (t-PA، PAI-1 و کمپلکس PAI-1 / t-PA) مردان جوان غیرفعال، علوم زیستی ورزشی، دورۀ 5، ش 3، ص 89 - 77.

     

    1. Adhihetty, P. J., Uguccioni, G., Leick, L., Hidalgo, J., Pilegaard, H., & Hood, D. A. (2009). The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. American Journal of Physiology-Cell Physiology,297(1), C217-C225.
    2. Burgomaster K A, Howarth K R, Phillips S M, Rakobowchuk M, Macdonald M J, McGee S L, Gibala M J. (2008). Similar metabolic adaptations durin exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586:15116–
      1. Burniston, J. G. (2009). Adaptation of the rat cardiac proteome in response to intensity‐controlled endurance exercise. Proteomics9(1), 106-115.
      2. Coffey, V. G., & Hawley, J. A. (2007). The molecular bases of training adaptation. Sports medicine37(9), 737-763.
      3. 9.            Eric B. Taylor, Jeremy D. Lamb, Richard W. Hurst, David G. Chesser, William J. Winder Ellingson, Lyle J. Greenwood, Brian B. Porter, Seth T. Herway and William W.(2005). Endurance training increases skeletal muscle LKB1 and PGC-α protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab. 289:E960-E968
      4. Gibala, M. J., & Ballantyne, C. (2007). High-intensity interval training: New insights. Sports Science Exchange20(2), 1-5.
      5. Gibala, M. J., McGee, S. L., Garnham, A. P., Howlett, K. F., Snow, R. J., & Hargreaves, M. (2009). Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. Journal of applied physiology106(3), 929-934.
      6. Goffart, S., & Wiesner, R. J. (2003). Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Experimental physiology,88(1), 33-40.
      7. Hawley, J. A. (2009). Molecular responses to strength and endurance training: Are they incompatible? This paper article is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference-Muscles as Molecular and Metabolic Machines, and has undergone the Journal's usual peer review process. Applied Physiology, Nutrition, and Metabolism34(3), 355-361.
      8. Høydal, M. A., Wisløff, U., Kemi, O. J., & Ellingsen, Ø. (2007). Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention & Rehabilitation, 14(6), 753-760.
      9. Lira, V. A., Brown, D. L., Lira, A. K., Kavazis, A. N., Soltow, Q. A., Zeanah, E. H., & Criswell, D. S. (2010). Nitric oxide and AMPK cooperatively regulate PGC‐1α in skeletal muscle cells. The Journal of physiology588(18), 3551-3566.
      10. Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of low‐volume high‐intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of physiology588(6), 1011-1022.
      11. Mortensen, O. H., Frandsen, L., Schjerling, P., Nishimura, E., & Grunnet, N. (2006). PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype. American Journal of Physiology-Endocrinology And Metabolism291(4), E807-E816.
      12. Norrbom, J., Sundberg, C. J., Ameln, H., Kraus, W. E., Jansson, E., & Gustafsson, T. (2004). PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. Journal of Applied Physiology96(1), 189-194.
      13. 19.         Pilegaard, H., Saltin, B., & Neufer, P. D. (2003). Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. The Journal of physiology546(3), 851-858.
      14. 20.         Rennie, M. J., Wackerhage, H., Spangenburg, E. E., & Booth, F. W. (2004). Control of the size of the human muscle mass. Annu. Rev. Physiol.66, 799-828.
      15. Rose, A. J., & Hargreaves, M. (2003). Exercise Increases Ca2+–Calmodulin‐Dependent Protein Kinase II Activity in Human Skeletal Muscle. The Journal of physiology553(1), 303-309.
      16. Russell, A. P., Feilchenfeldt, J., Schreiber, S., Praz, M., Crettenand, A., Gobelet, C., ... & Dériaz, O. (2003). Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes52(12), 2874-2881.
      17. Tang, J. E., Hartman, J. W., & Phillips, S. M. (2006). Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Applied Physiology, Nutrition, and Metabolism31(5), 495-501.
      18. 24.         Wende, A. R., Schaeffer, P. J., Parker, G. J., Zechner, C., Han, D. H., Chen, M. M., ... & Kelly, D. P. (2007). A role for the transcriptional coactivator PGC-1α in muscle refueling. Journal of Biological Chemistry282(50), 36642-36651
      19. Wisløff, U., Loennechen, J. P., Falck, G., Beisvag, V., Currie, S., Smith, G., & Ellingsen, Ø. (2001). Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovascular research50(3), 495-508.
      20. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., ... & Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell98(1), 115-124.