1. Megeney, L.A., et al., MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes & Development, 1996. 10(10): p. 1173-1183.
2. Biressi, S. and T.A. Rando, Heterogeneity in the muscle satellite cell population. Seminars in Cell & Developmental Biology, 2010. 21(8): p. 845-854.
3. Hawke, T.J. and D.J. Garry, Myogenic satellite cells: physiology to molecular biology. J Appl Physiol, 2001. 91(2): p. 534-51.
4. Holterman, C.E. and M.A. Rudnicki, Molecular regulation of satellite cell function. Seminars in Cell & Developmental Biology, 2005. 16(4-5): p. 575-584.
5. Zammit, P.S., All muscle satellite cells are equal, but are some more equal than others? Journal of Cell Science, 2008. 121(18): p. 2975-2982.
6. Hameed, M., et al., Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. The Journal of Physiology, 2002. 547(1): p. 247-254.
7. Raue, U., et al., Myogenic gene expression at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) women. J Appl Physiol, 2006. 101(1): p. 53-9.
8. Hughes, S.M., et al., MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents. Mech Dev, 1997. 61(1-2): p. 151-63.
9. Tamaki, T., et al., Limited myogenic response to a single bout of weight-lifting exercise in old rats. Am J Physiol Cell Physiol, 2000. 278(6): p. C1143-52.
10. Snijders, T., L.B. Verdijk, and L.J.C. van Loon, The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Research Reviews, 2009. 8(4): p. 328-338.
11. Schultz, E. and K.M. McCormick, Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol, 1994. 123: p. 213-257.
12. Smith, H.K., et al., Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. J Appl Physiol, 2001. 90(4): p. 1407-14.
13. Vissing, K., et al., Effect of sex differences on human MEF2 regulation during endurance exercise. Am J Physiol Endocrinol Metab, 2008. 294(2): p. E408-15.
14. Favier, F.B., H. Benoit, and D. Freyssenet, Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch, 2008. 456(3): p. 587-600.
15. Liu, Y., et al., Response of growth and myogenic factors in human skeletal muscle to strength training. British Journal of Sports Medicine, 2007. 42(12): p. 989-993.
16. Godfrey, J., et al., Interrupted Resistance Training and BMD in Growing Rats. International Journal of Sports Medicine, 2009. 30(08): p. 579-584.
17. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
18. Silver, N., et al., Selection of housekeeping genes for gene expression studies in the adult rat submandibular gland under normal, inflamed, atrophic and regenerative states. BMC Mol Biol, 2008. 9: p. 64.
19. Talmadge, R.J., Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve, 2000. 23(5): p. 661-79.
20. Willoughby, D.S. and M.J. Nelson, Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise. Med Sci Sports Exerc, 2002. 34(8): p. 1262-9.
21. Psilander, N., R. Damsgaard, and H. Pilegaard, Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol, 2003. 95(3): p. 1038-44.
22. Vissing, K., J.L. Andersen, and P. Schjerling, Are exercise-induced genes induced by exercise? FASEB J, 2005. 19(1): p. 94-6.
23. Kvorning, T., et al., Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans. The Journal of Physiology, 2006. 578(2): p. 579-593.
24. Drummond, M.J., et al., Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab, 2008. 295(6): p. E1333-40.
25. Vissing, K., et al., Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics. J Appl Physiol, 2005. 99(1): p. 164-72.
26. Peviani, S.M., et al., Short bouts of stretching increase myo-D, myostatin and atrogin-1 in rat soleus muscle. Muscle & Nerve, 2007. 35(3): p. 363-370.
27. Miyata, T., S. Tanaka, and K. Tachino, MyoD and myogenin mRNA levels after single session of treadmill exercise in rat skeletal muscle. Journal of physical therapy science, 2009. 21(1): p. 81-84.
28. Richard-Bulteau, H., et al., Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol, 2008. 294(2): p. C467-76.