Document Type : Research Paper I Open Access I Released under CC BY-NC 4.0 license
Authors
1 PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
2 Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3 Associate Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
Abstract
BENSCHOP, R. J., RODRIGUEZ-FEUERHAHN, M. & SCHEDLOWSKI, M. 1996. Catecholamine-induced
leukocytosis: early observations, current research, and future directions. Brain, behavior, and
immunity, 10, 77-91.
9. CEDDIA, M. A., PRICE, E. A., KOHLMEIER, C. K., EVANS, J. K., LU, Q., MCAULEY, E. & WOODS, J. A. 1999.
Differential leukocytosis and lymphocyte mitogenic response to acute maximal exercise in the young
and old. Medicine & Science in Sports & Exercise, 31, 829.
10. GABRIEL, H. & KINDERMANN, W. 1997. The acute immune response to exercise: What does it mean?
International journal of sports medicine, 18, 28.
11. GIMENEZ, M., MOHAN-KUMAR, T., HUMBERT, J. C., DE TALANCE, N. & BUISINE, J. 1986. Leukocyte,
lymphocyte and platelet response to dynamic exercise. European journal of applied physiology and
occupational physiology, 55, 465-470.
12. GLAISTER, M., HAUCK, H., ABRAHAM, C. S., MERRY, K. L., BEAVER, D., WOODS, B. & MCINNES, G.
2009. Familiarization, reliability, and comparability of a 40-m maximal shuttle run test. Journal of
Science and Medicine, 8, 77-82.
13. GREEN, K. J., CROAKER, S. J. & ROWBOTTOM, D. G. 2003. Carbohydrate supplementation and
exercise-induced changes in T-lymphocyte function. Journal of Applied Physiology, 95, 1216-1223.
14. MCFARLIN, B. K. & MITCHELL, J. B. 2003. Exercise in hot and cold environments: differential effects
on leukocyte number and NK cell activity. Aviation, space, and environmental medicine, 74, 1231-
1236.
15. MITCHELL, J. B., DUGAS, J. P., MCFARLIN, B. K. & NELSON, M. J. 2002. Effect of exercise, heat stress,
and hydration on immune cell number and function. Medicine & Science in Sports & Exercise, 34,
1941.
16. NIELSEN, H. B. 2003. Lymphocyte responses to maximal exercise: a physiological perspective. Sports
Medicine, 33, 853-867.
17. NIEMAN, D. C. 1997. Immune response to heavy exertion. Journal of Applied Physiology, 82, 1385-
1394.
18. NIEMAN, D. C., NEHLSEN-CANNARELLA, S. L., DONOHUE, K. M., CHRITTON, D. B. W., HADDOCK, B. L.,
STOUT, R. O. N. W. & LEE, J. W. 1991. The effects of acute moderate exercise on leukocyte and
lymphocyte subpopulations. Medicine & Science in Sports & Exercise, 23, 578.
19. NIEMAN, D. C. & PEDERSEN, B. K. 1999. Exercise and immune function: recent developments. Sports
Medicine, 27, 73-80.
20. NIESS, A., FEHRENBACH, E., LEHMANN, R., OPAVSKY, L., JESSE, M., NORTHOFF, H. & DICKHUTH, H. H.
2003. Impact of elevated ambient temperatures on the acute immune response to intensive
endurance exercise. European journal of applied physiology, 89, 344-351.
21. PEAKE, J. 2002. Exercise-induced alterations in neutrophil degranulation and respiratory burst
activity: possible mechanisms of action. Exercise immunology review, 8, 49.
22. PEAKE, J., PEIFFER, J. J., ABBISS, C. R., NOSAKA, K., OKUTSU, M., LAURSEN, P. B. & SUZUKI, K. 2008.
Body temperature and its effect on leukocyte mobilization, cytokines and markers of neutrophil
activation during and after exercise. European journal of applied physiology, 102, 391-401.
23. PEDERSEN, B. K. & HOFFMAN-GOETZ, L. 2000. Exercise and the immune system: regulation,
integration, and adaptation. Physiological reviews, 80, 1055-1081.
24. PYNE, D. B., SMITH, J. A., BAKER, M. S., TELFORD, R. D. & WEIDEMANN, M. J. 2000. Neutrophil
oxidative activity is differentially affected by exercise intensity and type. Journal of Science and
Medicine in Sport, 3, 44-54.
25. RALL, L. C., ROUBENOFF, R., CANNON, J. G., ABAD, L. W., DINARELLO, C. A. & MEYDANI, S. N. 1996.
Effects of progressive resistance training on immune response in aging and chronic inflammation.
Medicine & Science in Sports & Exercise, 28, 1356.
26. ROBSON, P. J., BLANNIN, A., WALSH, N., CASTELL, L. & GLEESON, M. 1999. Effects of exercise
intensity, duration and recovery on in vitro neutrophil function in male athletes. International
journal of sports medicine, 20, 128-135.
27. RONSEN, O., KJELDSEN-KRAGH, J., HAUG, E., BAHR, R. & PEDERSEN, B. K. 2002. Recovery time affects
immunoendocrine responses to a second bout of endurance exercise. American Journal of
Physiology- Cell Physiology, 283, C1612-C1620.
28. SHEPHARD, R. & SHEK, P. 1995. Exercise, aging and immune function. International journal of sports
medicine, 16, 1-6.
29. SHEPHARD, R. J. 2003. Adhesion molecules, catecholamines and leucocyte redistribution during and
following exercise. Sports Medicine, 33, 261-284.
30. SHEPHARD, R. J. & SHEK, P. N. 1999. Immune dysfunction as a factor in heat illness. Critical reviews in
immunology, 19, 285.
31. SMITH, J. 1997. Exercise immunology and neutrophils. International journal of sports medicine, 18,
46.
32. SMITH, L. L. 2003. Overtraining, excessive exercise, and altered immunity: is this a T helper-1 versus
T helper-2 lymphocyte response? Sports Medicine, 33, 347-364.
33. TANIMURA, Y., SHIMIZU, K., TANABE, K., OTSUKI, T., YAMAUCHI, R., MATSUBARA, Y., IEMITSU, M.,
MAEDA, S. & AJISAKA, R. 2008. Exercise-induced oxidative DNA damage and lymphocytopenia in
sedentary young males. Medicine & Science in Sports & Exercise, 40, 1455.
34. TIMMONS, B. W., TARNOPOLSKY, M. A. & BAR-OR, O. 2004. Immune responses to strenuous exercise
and carbohydrate intake in boys and men. Pediatric research, 56, 227-234.
35. TVEDE, N., KAPPEL, M., HALKJAER-KRISTENSEN, J., GALBO, H. & PEDERSEN, B. 1993. The effect of
light, moderate and severe bicycle exercise on lymphocyte subsets, natural and lymphokine
activated killer cells, lymphocyte proliferative response and interleukin 2 production. International
journal of sports medicine, 14, 275-275.
36. VASANKARI, T., KUJALA, U., SARNA, S. & AHOTUPA, M. 1998. Effects of ascorbic acid and
carbohydrate ingestion on exercise induced oxidative stress. Journal of sports medicine and physical
fitness, 38, 281-285.
37. WALSH, N. P. & WHITHAM, M. 2006. Exercising in environmental extremes: a greater threat to
immune function? Sports Medicine, 36, 941-976.
38. WANG, J. S. & LIN, C. T. 2010. Systemic hypoxia promotes lymphocyte apoptosis induced by
oxidative stress during moderate exercise. European journal of applied physiology, 108, 371-382.
39. WIGERNAES, I., HOSTMARK, A., KIERULF, P. & STROMME, S. 2000. Active recovery reduces the
decrease in circulating white blood cells after exercise. International journal of sports medicine, 21,
608-612.
40. WIGERNÆS, I., HØSTMARK, A. T., STRØMME, S. B., KIERULF, P. & BIRKELAND, K. 2001. Active
recovery and post-exercise white blood cell count, free fatty acids, and hormones in endurance
athletes. European journal of applied physiology, 84, 358-366.
41. WOODS, J. A., DAVIS, J., SMITH, J. A. & NIEMAN, D. 1999. Exercise and cellular innate immune
function. Medicine and science in sports and exercise, 31, 57.
The Effect of a Single Bout of Progressive Aerobic and High Intensity Interval Exercise on Leukocytes and Blood Platelets of Non-Athlete Men
Received: 2013/3/11
Accepted: 2013/10/3
1. Mehdi Yadegari1 2. Ali Asghar Ravasi 3. Siroos Choobineh
1. PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
2. Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
3. Associate Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
Abstract
The aim of this study was to compare the effect of a single bout of progressive aerobic and high intensity interval exercise on leukocytes and blood platelets of male non-athletes. In this study, 11 young male non-athletes performed a single bout of progressive aerobic exercise and a single bout of high intensity interval exercise. Before, immediately and 2 hours after the exercise, leukocytes, neutrophils, lymphocytes, monocytes and platelets were counted. The collected data were analyzed using analysis of variance with repeated measures, LSD post hoc test and independent t test. Leukocytes increased immediately after both activities (P≤0.05). Neutrophils increased immediately after both types of activity (P≤0.05). The number of lymphocytes also increased immediately after both types of activity and with a reduction, they reached below the resting levels 2 hours after the exercise (P≤0.05). The monocytes and platelets increased immediately after both types of activities (P≤0.05). It seems that a single bout of progressive aerobic and high intensity interval exercise can significantly increase the levels of immune cells and blood circulation, and there is no significant difference in the stimulation of immune cells between these two types of exercise.
Keywords