1. Whiting, D.R., et al., IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes research and clinical practice, 2011. 94(3): p. 311-321.
2. Guariguata, L., et al., Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes research and clinical practice, 2014. 103(2): p. 137-149.
3. Nagi, D. and I. Gallen, ABCD position statement on physical activity and exercise in diabetes. Practical Diabetes International, 2010. 27(4): p. 158-163a.
4. Longo, D.L., et al., Harrison's principles of internal medicine 18E Vol 2 EB. 2012: McGraw Hill Professional.
5. Yeganeh, M., et al., Central obesity as a reliable predictor for hypertension and dyslipidemia: Tehran Lipid Glucose Study. Iranian Journal of Endocrinology and Metabolism, 2010. 12(3): p. 251-314. [In persian]
6. Sadeghi, M., et al., A comparison of cardiovascular risk factors and healthy lifestyle of housewives and working women in Iran central regions-Isfahan Healthy Heart Program. Yafteh, 2012. 13: p. 55-64.
7. Meredith-Jones, K., et al., Upright water-based exercise to improve cardiovascular and metabolic health: a qualitative review. Complementary therapies in medicine, 2011. 19(2): p. 93-103.
8. Hayat, S.A., et al., Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clinical Science, 2004. 107(6): p. 539-557.
9. Yudkin, J.S., E. Eringa, and C.D. Stehouwer, “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. The Lancet, 2005. 365(9473): p. 1817-1820.
10. Bauer, V. and R. Sotníková, Nitric oxide—the endothelium-derived relaxing factor and its role in endothelial functions. General physiology and biophysics, 2010. 29(4): p. 319.
11. Woodman, R.J., D.A. Playford, and G.F. Watts, Basal production of nitric oxide (NO) and non-NO vasodilators in the forearm microcirculation in Type 2 diabetes: Associations with blood pressure and HDL cholesterol. Diabetes research and clinical practice, 2006. 71(1): p. 59-67.
12. Henry, R.M., et al., Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not: The Hoorn Study. Atherosclerosis, 2004. 174(1): p. 49-56.
13. Hill, J.O. and H.R. Wyatt, Role of physical activity in preventing and treating obesity. Journal of Applied Physiology, 2005. 99(2): p. 765-770.
14. Sigal, R.J., et al., Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Annals of internal medicine, 2007. 147(6): p. 357-369.
15. Delevatti, R.S., et al., Glycemic reductions following water-and land-based exercise in patients with type 2 diabetes mellitus. Complementary therapies in clinical practice, 2016. 24: p. 73-77.
16. Åsa, C., et al., Aquatic exercise is effective in improving exercise performance in patients with heart failure and type 2 diabetes mellitus. Evidence-based complementary and alternative medicine, 2012. 2012.
17. Meyer, K. and M.-C. Leblanc, Aquatic therapies in patients with compromised left ventricular function and heart failure. Clinical & Investigative Medicine, 2008. 31(2): p. 90-97.
18. Albright, A., et al., American College of Sports Medicine position stand. Exercise and type 2 diabetes. Medicine and science in sports and exercise, 2000. 32(7): p. 1345-1360.
19. Jones, L.M., K. Meredith-Jones, and M. Legge, The effect of water-based exercise on glucose and insulin response in overweight women: a pilot study. Journal of Women's Health, 2009. 18(10): p. 1653-1659.
20. Volaklis, K.A., A.T. Spassis, and S.P. Tokmakidis, Land versus water exercise in patients with coronary artery disease: effects on body composition, blood lipids, and physical fitness. American heart journal, 2007. 154(3): p. 560. e1-560. e6.
21. Colado, J.C., et al., Effects of aquatic resistance training on health and fitness in postmenopausal women. European journal of applied physiology, 2009. 106(1): p. 113-122.
22. McNamara, R.J., et al., Water-based exercise in COPD with physical comorbidities: a randomised controlled trial. European Respiratory Journal, 2013. 41(6): p. 1284-1291.
23. Jorge, M.L.M.P., et al., The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism, 2011. 60(9): p. 1244-1252.
24. Santos, J., et al., Skeletal muscle pathways of contraction-enhanced glucose uptake. International journal of sports medicine, 2008. 29(10): p. 785-794.
25. Rutter, G.A., G. da Silva Xavier, and I. Leclerc, Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochemical Journal, 2003. 375(1): p. 1-16.
26. Zoppini, G., et al., Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2006. 16(8): p. 543-549.
27. Adams, V., et al., Impact of regular physical activity on the NAD (P) H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation, 2005. 111(5): p. 555-562.
28. Maiorana, A., et al., Combined aerobic and resistance exercise improves glycemic control and fitness in type 2 diabetes. Diabetes research and clinical practice, 2002. 56(2): p. 115-123.